SBOS283E September   2003  – December 2024 REF1112

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Shunt Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
      2. 7.2.2 MicroPOWER 3μA, 1V Voltage Reference
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
      3. 7.2.3 2.5V Reference on 1μA
        1. 7.2.3.1 Design Requirements
        2. 7.2.3.2 Detailed Design Procedure
      4. 7.2.4 Adjustable Voltage Shunt Reference
      5. 7.2.5 Level Shift to Achieve Full ADC Input Range
      6. 7.2.6 Stable Current Source
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

When using the REF1112 as a reference, determine the following:

  • Supply voltage range
  • Current source resistance
  • Reference voltage accuracy

To design using the REF1112, make sure that the VS is larger than VREF.

The resistor RBIAS sets the cathode current of the REF1112, IR. Make sure that this current remains in the operational region of the part for the entire VS and load range.

Using this information, select a RBIAS such that:

IREFMIN < IREF < IREFMAX where IREFMAX = 5mA.

In this application the IREF is the operating current of the REF1112 plus the maximum possible ILOAD under no-load conditions.