SBVS299 April   2017

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Supply Voltage
      2. 8.3.2 Thermal Hysteresis
      3. 8.3.3 Temperature Drift
      4. 8.3.4 Noise Performance
      5. 8.3.5 Long-Term Stability
      6. 8.3.6 Load Regulation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Negative Reference Voltage
      2. 8.4.2 Data Acquisition
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Related Links
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, V+ to V– 7 V
Output short circuit Continuous
Operating temperature –55 135 °C
Junction temperature 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Input voltage VREF + 0.05(1) 5.5 V
ILOAD Load current 25 mA
TA Operating temperature –40 125 °C
Minimum supply voltage for the REF3112-Q1 is 1.8 V.

Thermal Information

THERMAL METRIC(1) REF31xx-Q1 UNIT
DBZ (SOT-23)
3 PINS
RθJA Junction-to-ambient thermal resistance 292.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 124.4 °C/W
RθJB Junction-to-board thermal resistance 89 °C/W
ψJT Junction-to-top characterization parameter 11.4 °C/W
ψJB Junction-to-board characterization parameter 87.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

at TA = 25°C, ILOAD = 0 mA, and VIN = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
REF3312-Q1(1) — 1.25 V
VOUT Output voltage 1.2475 1.25 1.2525 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 17 μVPP
f = 10 Hz to 10 kHz 24 μVRMS
REF3120-Q1 — 2.048 V
VOUT Output voltage 2.0439 2.048 2.0521 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 27 μVPP
f = 10 Hz to 10 kHz 39 μVRMS
REF3125-Q1 — 2.5 V
VOUT Output voltage 2.495 2.5 2.505 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 33 μVPP
f = 1 0Hz to 10 kHz 48 μVRMS
REF3130-Q1 — 3 V
VOUT Output voltage 2.994 3 3.006 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 39 μVPP
f = 10 Hz to 10 kHz 57 μVRMS
REF3133-Q1 — 3.3 V
VOUT Output voltage 3.2934 3.3 3.3066 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 43 μVPP
f = 10 Hz to 10 kHz 63 μVRMS
REF3140-Q1 — 4.096 V
VOUT Output voltage 4.0878 4.096 4.1042 V
Initial accuracy –0.2% 0.2%
Output voltage noise f = 0.1 Hz to 10 Hz 53 μVPP
f = 10 Hz to 10 kHz 78 μVRMS
REF31xx-Q1 (REF3112-Q1, REF3120-Q1, REF3125-Q1, REF3130-Q1, REF3133-Q1, REF3140-Q1)
dVOUT/dT Output voltage temperature drift(2) TA = 0°C to 70°C. 5 15 ppm/°C
TA = –40°C to +125°C . 10 20
Long-term stability 0 to 1000 hours 70 ppm
Line regulation VREF + 0.05(1) ≤ VIN ≤ 5.5 V 20 65 ppm/V
dVOUT/dILOAD Load regulation(3) Sourcing 0 mA < ILOAD < 10 mA, VIN = VREF + 250 mV(1) 10 30 µV/mA
Sinking –10 mA < ILOAD < 0 mA, VIN = VREF + 100 mV(1) 20 50
dT Thermal hysteresis(4) First Cycle 100 ppm
Additional Cycles 25
VIN – VOUT Dropout voltage(1) TA = –40°C to +125°C. 5 50 mV
ILOAD Output current –10 10 mA
ISC Short-circuit current Sourcing 50 mA
Sinking 40
Turnon settling time To 0.1% at VIN = +5 V with CL = 0 μF 400 µs
POWER SUPPLY
VS Voltage ILOAD = 0, TA = –40°C to +125°C. VREF + 0.05(1) 5.5 V
IQ Quiescent current ILOAD = 0, TA = 25°C 100 115 µA
ILOAD = 0, TA = –40°C to +125°C 115 135
Minimum supply voltage for the REF3112 is 1.8 V.
Box Method used to determine temperature drift.
Typical value of load regulation reflects measurements using force and sense contacts; see Load Regulation.
Thermal hysteresis is explained in more detail in Application and Implementation of this data sheet.

Typical Characteristics

At TA = 25°C, VIN = 5-V power supply, and REF3125-Q1 is used for typical characteristic measurements, unless otherwise noted.
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_tmp_drift_0-70_bvs046.gif
0°C to 70°C
Figure 1. Temperature Drift
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_vout-tmp_bvs046.gif Figure 3. Output Voltage vs Temperature
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_iq-tmp_bvs046.gif Figure 5. Quiescent Current vs Temperature
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_psrr-frq_bvs046.gif Figure 7. PSRR vs Frequency
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_vout-load_bvs046.gif
Figure 9. Output Voltage vs Load Current
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_noise_bvs046.gif Figure 11. 0.1-Hz to 10-Hz Noise
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_line_trans_0pf_bvs046.gif
CL = 0 pF
Figure 13. Line Transient
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_load_trans_0pf_10ma_bvs046.gif
CL = 0 pF ±10-mA Output Pulse
Figure 15. Load Transient
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_load_trans_0pf_1ma_bvs046.gif
CL = 0 pF ±1-mA Output Pulse
Figure 17. Load Transient
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 G001_SBVS046.png
Figure 19. REF3125-Q1 Start-Up
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_tmp_drift_40-125_bvs046.gif
–40°C to +125°C
Figure 2. Temperature Drift
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_dropout-load_bvs046.gif Figure 4. Dropout Voltage vs Load Current
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_impedance-frq_bvs046.gif Figure 6. Output Impedance vs Frequency
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_output-supply_bvs046.gif Figure 8. Output vs Supply
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_step_response_bvs046.gif
CL = 0 μF 5-V Start-Up
Figure 10. Step Response
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_long_term_stability_bvs046.gif Figure 12. REF3112 Long-Term Stability
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_line_trans_10uf_bvs046.gif
CL = 10 μF
Figure 14. Line Transient
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_load_trans_1uf_10ma_bvs046.gif
CL = 1 µF ±10-mA Output Pulse
Figure 16. Load Transient
REF3112-Q1 REF3120-Q1 REF3125-Q1 REF3130-Q1 REF3133-Q1 REF3140-Q1 tc_load_trans_1uf_1ma_bvs046.gif
CL = 1 µF ±1-mA Output Pulse
Figure 18. Load Transient