SPNS155I September   2009  – June 2015 SM470R1B1M-HT

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Characteristics
  4. Bare Die
    1. 4.1 Bare Die Information
  5. Pin Configuration and Functions
    1. 5.1 Features
    2. 5.2 Pin Functions (HFQ/HKP Package)
    3. 5.3 Pin Functions (PGE Package)
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Electrical Characteristics
    5. 6.5  Thermal Characteristics
    6. 6.6  ZPLL and Clock Specifications
    7. 6.7  RST and PORRST Timings
    8. 6.8  JTAG Scan Interface Timing
    9. 6.9  Output Timings
    10. 6.10 Input Timings
    11. 6.11 Flash Timings
    12. 6.12 SPIn Master Mode Timing Parameters
    13. 6.13 SPIn Slave Mode Timing Parameters
    14. 6.14 SCIN Isosynchronous Mode Timings - Internal Clock
    15. 6.15 SCIN Isosynchronous Mode Timings - External Clock
    16. 6.16 I2C Timing
    17. 6.17 Standard Can Controller (SCC) Mode Timings
    18. 6.18 Expansion Bus Module Timing
    19. 6.19 Multi-Buffered A-to-D Converter (MibADC)
  7. Parameter Measurement Information
    1. 7.1 External Reference Resonator/Crystal Oscillator Clock Option
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 MibADC
        1. 8.1.1.1 MibADC Event Trigger Enhancements
      2. 8.1.2 JTAG Interface
      3. 8.1.3 High-End Timer (HET) Timings
        1. 8.1.3.1 Minimum PWM Output Pulse Width
        2. 8.1.3.2 Minimum Input Pulses that can be Captured
      4. 8.1.4 Interrupt Priority (IEM to CIM)
      5. 8.1.5 Expansion Bus Module (EBM)
    2. 8.2 Memory
      1. 8.2.1 Memory Selects
        1. 8.2.1.1 JTAG Security Module
        2. 8.2.1.2 Memory Security Module
        3. 8.2.1.3 RAM
        4. 8.2.1.4 F05 Flash
          1. 8.2.1.4.1 Flash Protection Keys
          2. 8.2.1.4.2 Flash Read
          3. 8.2.1.4.3 Flash Pipeline Mode
          4. 8.2.1.4.4 Flash Program and Erase
          5. 8.2.1.4.5 HET RAM
          6. 8.2.1.4.6 Peripheral Selects and Base Addresses
          7. 8.2.1.4.7 Direct-Memory Access (DMA)
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Identification Code Register
      2. 9.1.2 Timing Parameter Symbology
    2. 9.2 Development Support
    3. 9.3 Device Nomenclature
    4. 9.4 Documentation Support
    5. 9.5 Community Resources
    6. 9.6 Trademarks
    7. 9.7 Electrostatic Discharge Caution
    8. 9.8 Glossary
  10. 10Mechanical Packaging and Orderable Information
    1. 10.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range, A version (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage VCC(2) –0.3 2.5 V
Supply voltage VCCIO, VCCAD, VCCP (flash pump)(2) –0.3 4.1 V
Input voltage All 5-V tolerant input pins –0.3 6.0 V
All other input pins –0.3 4.1 V
Input clamp current IIK (VI < 0 or VI > VCCIO)
All pins except ADIN[0:11], PORRST, TRST, TEST, and TCK
±20 mA
IIK (VI < 0 or VI > VCCAD)
ADIN[0:11]
±10 mA
Operating free-air temperature, TA HFQ/HKP package –55 220 °C
PGE package –55 150 °C
Storage temperature, Tstg –55 220 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to their associated grounds.

6.2 ESD Ratings

VALUE UNIT
SM470R1B1M-HT in CFP Package
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 750
SM470R1B1M-HT in LQFP Package
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions(1)

MIN NOM MAX UNIT
VCC Digital logic supply voltage (Core) SYSCLK = 48 MHz
(pipeline mode enabled)
1.71 2.05 V
SYSCLK = 60 MHz
(pipeline mode enabled)
1.81 2.05
VCCIO Digital logic supply voltage (I/O) 3 3.6 V
VCCAD ADC supply voltage 3 3.6 V
VCCP Flash pump supply voltage 3 3.6 V
VSS Digital logic supply ground 0 V
VSSAD ADC supply ground(1) –0.1 0.1 V
TA Operating free-air temperature HFQ/HKP package –55 220 °C
PGE package –55 150
(1) All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD.

6.4 Electrical Characteristics

Minimum and maximum parameters are characterized over the operating temperature range unless otherwise noted, but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. (1)
PARAMETER TEST CONDITIONS MIN TYP(2) MAX UNIT
Vhys Input hysteresis 0.15 V
VIL Low-level input
voltage
All inputs(3) –0 .3 0.8 V
VIH High-level input
voltage
All inputs 2 VCCIO + 0. 3 V
Input threshold
voltage
AWD only(4) 1.35 1.8
OSCIN with digital input only 0.7 VCC VCC + 0.3
VOL Low-level output voltage(5) IOL = IOL MAX 0.2 VCCIO V
IOL = 50 µA 0.2
VOH High-level output voltage(5) IOH = IOH MIN 0.8 VCCIO V
IOH = 50 µA VCCIO – 0.2
IIC Input clamp current (I/O pins)(6) VI < VSSIO – 0. 3 or
VI > VCCIO + 0. 3
–2 2 mA
II Input current
(3.3 V input pins)
IIL Pulldown VI = VSS –1 1 µA
IIH Pulldown VI = VCCIO 5 100
IIL Pullup VI = VSS –100 –5
IIH Pullup VI = VCCIO –1 1
All other pins No pullup or pulldown –1 1
Input current (5 V tolerant input pins) VI = VSS –1 1 µA
VI = VCCIO 1 5
VI = 5 V 5 25
VI = 5.5 V 25 50
IOL Low-level output
current
CLKOUT, AWD, TDI, TDO, TMS, TMS2 VOL = VOL MAX 8 mA
RST 4
All other 3.3 V I/O(7) 2
5 V tolerant 4
IOH High-level output
current
CLKOUT, TDI, TDO, TMS, TMS2 VOH = VOH MIN –8 mA
RST –4
All other 3.3 V I/O(7) –2
5 V tolerant –4
ICC VCC Digital supply current (operating mode) SYSCLK = 48 MHz,
ICLK = 24 MHz, VCC = 2.05 V
110 mA
SYSCLK = 60 MHz,
ICLK = 30 MHz, VCC = 2.05 V
125 mA
VCC Digital supply current (standby mode)(8)(9) OSCIN = 5 MHz, VCC = 2.05 V 28 mA
VCC Digital supply current (halt mode)(8)(9) All frequencies, VCC = 2.05 V 700 µA
ICCIO VCCIO Digital supply current (operating mode) No DC load, VCCIO = 3.6 V(10) 20 mA
VCCIO Digital supply current (standby mode)(9) No DC load, VCCIO = 3.6 V(10) 250 µA
VCCIO Digital supply current (halt mode)(9) No DC load, VCCIO = 3.6 V(10) 225 µA
ICCAD VCCAD supply current (operating mode) All frequencies, VCCAD = 3.6 V 15 mA
VCCAD supply current (standby mode) All frequencies, VCCAD = 3.6 V 10 µA
VCCAD supply current (halt mode) All frequencies, VCCAD = 3.6 V 10 µA
ICCP VCCP pump supply current SYSCLK = 48 MHz, VCCP = 3.6 V read operation 45 mA
SYSCLK = 60 MHz, VCCP = 3.6 V read operation 55 mA
VCCP = 3.6 V program and erase 70 mA
VCCP = 3.6 V standby mode operation(8) 10 µA
VCCP = 3.6 V halt mode operation(8) 10 µA
CI Input capacitance 2 pF
CO Output capacitance 3 pF
(1) Source currents (out of the device) are negative while sink currents (into the device) are positive.
(2) The typical values indicated in this table are the expected values during operation under normal operating conditions: nominal VCC, VCCIO, or VCCAD, room temperature.
(3) This does not apply to the PORRST pin. For PORRST exceptions, see the RST and PORRST Timings section.
(4) These values help to determine the external RC network circuit. For more details, see the TMS470R1x System Module Reference Guide (SPNU189).
(5) VOL and VOH are linear with respect to the amount of load current (IOL/IOH) applied.
(6) Parameter does not apply to input-only or output-only pins.
(7) Some of the 2 mA buffers on this device are zero-dominant buffers, as indicated by a -z in the Output Current column of the Pin Functions table. If two of these buffers are shorted together and one is outputting a low level and the other is outputting a high level, the resulting value will always be low.
(8) For flash banks/pumps in sleep mode.
(9) For reduced power consumption in low power mode, CANSRX and CANSTX should be driven output LOW.
(10) I/O pins configured as inputs or outputs with no load. All pulldown inputs ≤0.2 V. All pullup inputs ≥ VCCIO – 0.2 V.

6.5 Thermal Characteristics

THERMAL METRIC(1) SM470R1B1M-HT UNIT
HFQ (CQFP) OR HKP (CFP) PGE (LQFP)
64 PINS 144 PINS
RθJA Junction-to-ambient thermal resistance N/A 38.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance N/A 5.7 °C/W
RθJB Junction-to-board thermal resistance 152.0148 19.7 °C/W
ψJT Junction-to-top characterization parameter N/A 0.1 °C/W
ψJB Junction-to-board characterization parameter N/A 19.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.4898 N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
SM470R1B1M-HT life_exp_pns155.gif
1. See data sheet for absolute maximum and minimum recommended operating conditions.
2. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
Figure 6-1 SM470R1B1M-HT Life Expectancy Curve (HFQ/HKP Package)
SM470R1B1M-HT op_life_pge_pns155.gif
1. See data sheet for absolute maximum and minimum recommended operating conditions.
2. Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
3. Device is qualified for 1000 hour operation at 150°C. Device is functional at 175°C, but at reduced operating life.
Figure 6-2 SM470R1B1M-HT Wirebond Life Derating Chart (PGE Package)

6.6 ZPLL and Clock Specifications

Table 6-1 Timing Requirements for ZPLL Circuits Enabled or Disabled(1)

MIN TYP MAX UNIT
ƒ(OSC) Input clock frequency 4 10 MHz
tc(OSC) Cycle time, OSCIN 100 ns
tw(OSCIL) Pulse duration, OSCIN low 15 ns
tw(OSCIH) Pulse duration, OSCIN high 15 ns
ƒ(OSCRST) OSC FAIL frequency(2) 53 kHz
(1) Not production tested.
(2) Causes a device reset (specifically a clock reset) by setting the RST OSC FAIL (GLBCTRL.15) and the OSC FAIL flag (GLBSTAT.1) bits equal to 1. For more detailed information on these bits and device resets, see the TMS470R1x System Module Reference Guide (SPNU189).

Table 6-2 Switching Characteristics over Recommended Operating Conditions for Clocks(1)(2)(3)(4)

PARAMETER TEST CONDITIONS(5) MIN MAX UNIT
ƒ(SYS) System clock frequency(6) Pipeline mode enabled 60(7) MHz
Pipeline mode disabled 24 MHz
ƒ(CONFIG) System clock frequency - flash config mode 24 MHz
ƒ(ICLK) Interface clock frequency Pipeline mode enabled 30 MHz
Pipeline mode disabled 24 MHz
ƒ(ECLK) External clock output frequency for ECP module Pipeline mode enabled 30 MHz
Pipeline mode disabled 24 MHz
tc(SYS) Cycle time, system clock Pipeline mode enabled 16.7 ns
Pipeline mode disabled 41.6 ns
tc(CONFIG) Cycle time, system clock - flash config mode 41.6 ns
tc(ICLK) Cycle time, interface clock Pipeline mode enabled 33.3 ns
Pipeline mode disabled 41.6 ns
tc(ECLK) Cycle time, ECP module external clock output Pipeline mode enabled 33.3 ns
Pipeline mode disabled 41.6 ns
(1) Not production tested.
(2) ƒ(SYS) = M × ƒ(OSC)/R, where M = {8}, R = {1,2,3,4,5,6,7,8} when PLLDIS = 0. R is the system-clock divider determined by the CLKDIVPRE [2:0] bits in the global control register (GLBCTRL[2:0]) and M is the PLL multiplier determined by the MULT4 bit also in the GLBCTRL register (GLBCTRL.3).
ƒ(SYS) = ƒ(OSC)/R, where R = {1,2,3,4,5,6,7,8} when PLLDIS = 1.
ƒ(ICLK) = ƒ(SYS)/X, where X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module.
(3) ƒ(ECLK) = ƒ(ICLK)/N, where N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.
(4) Only ZPLL mode is available. FM mode must not be turned on.
(5) Pipeline mode enabled or disabled is determined by the ENPIPE bit (FMREGOPT.0).
(6) Flash Vread must be set to 5 V to achieve maximum system clock frequency.
(7) Operating VCC range for this system clock frequency is 1.81 to 2.05 V.

Table 6-3 Switching Characteristics over Recommended Operating Conditions for External Clocks(1)(2)(3)(4)

(see Figure 6-3 and Figure 6-4)
PARAMETER TEST CONDITIONS MIN MAX UNIT
tw(COL) Pulse duration, CLKOUT low SYSCLK or MCLK(5) 0.5tc(SYS) – tf ns
ICLK: X is even or 1(6) 0.5tc(ICLK) – tf
ICLK: X is odd and not 1(6) 0.5tc(ICLK) + 0.5tc(SYS) – tf
tw(COH) Pulse duration, CLKOUT high SYSCLK or MCLK(5) 0.5tc(SYS) – tr ns
ICLK: X is even or 1(6) 0.5tc(ICLK) – tr
ICLK: X is odd and not 1(6) 0.5tc(ICLK) – 0.5tc(SYS) – tr
tw(EOL) Pulse duration, ECLK low N is even and X is even or odd 0.5tc(ECLK) – tf ns
N is odd and X is even 0.5tc(ECLK) – tf
N is odd and X is odd and not 1 0.5tc(ECLK) + 0.5tc(SYS) – tf
tw(EOH) Pulse duration, ECLK high N is even and X is even or odd 0.5tc(ECLK) – tr ns
N is odd and X is even 0.5tc(ECLK) – tr
N is odd and X is odd and not 1 0.5tc(ECLK) – 0.5tc(SYS) – tr
(1) Not production tested.
(2) X = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}. X is the interface clock divider ratio determined by the PCR0[4:1] bits in the SYS module.
(3) N = {1 to 256}. N is the ECP prescale value defined by the ECPCTRL[7:0] register bits in the ECP module.
(4) CLKOUT/ECLK pulse durations (low/high) are a function of the OSCIN pulse durations when PLLDIS is active.
(5) Clock source bits are selected as either SYSCLK (CLKCNTL[6:5] = 11 binary) or MCLK (CLKCNTL[6:5] = 10 binary).
(6) Clock source bits are selected as ICLK (CLKCNTL[6:5] = 01 binary).
SM470R1B1M-HT td_clkout_tdz046.gifFigure 6-3 CLKOUT Timing Diagram
SM470R1B1M-HT td_eclk_tdz046.gifFigure 6-4 ECLK Timing Diagram

6.7 RST and PORRST Timings

Table 6-4 Timing Requirements for PORRST(1)

(see Figure 6-5)
MIN MAX UNIT
VCCPORL VCC low supply level when PORRST must be active during power up 0.6 V
VCCPORH VCC high supply level when PORRST must remain active during power up and become active during power down 1.5 V
VCCIOPORL VCCIO low supply level when PORRST must be active during power up 1.1 V
VCCIOPORH VCCIO high supply level when PORRST must remain active during power up and become active during power down 2.75 V
VIL Low-level input voltage after VCCIO > VCCIOPORH 0.2 VCCIO V
VIL(PORRST) Low-level input voltage of PORRST before VCCIO > VCCIOPORL 0.5 V
tsu(PORRST)r Setup time, PORRST active before VCCIO > VCCIOPORL during power up 0 ms
tsu(VCCIO)r Setup time, VCCIO > VCCIOPORL before VCC > VCCPORL 0 ms
th(PORRST)r Hold time, PORRST active after VCC > VCCPORH 1 ms
tsu(PORRST)f Setup time, PORRST active before VCC ≤ VCCPORH during power down 8 µs
th(PORRST)rio Hold time, PORRST active after VCC > VCCIOPORH 1 ms
th(PORRST)d Hold time, PORRST active after VCC < VCCPORL 0 ms
tsu(PORRST)fio Setup time, PORRST active before VCC ≤ VCCIOPORH during power down 0 ns
tsu(VCCIO)f Setup time, VCC < VCCPORL before VCCIO < VCCIOPORL 0 ns
(1) Not production tested.
SM470R1B1M-HT td_porrst_tdz046.gif
NOTE: VCCIO > 1.1 V before VCC > 0.6 V
Figure 6-5 PORRST Timing Diagram

Table 6-5 Switching Characteristics over Recommended Operating Conditions for RST(1)(2)

PARAMETER MIN MAX UNIT
tv(RST) Valid time, RST active after PORRST inactive 4112tc(OSC) ns
Valid time, RST active (all others) 8tc(SYS)
tfsu Flash start up time, from RST inactive to fetch of first instruction from flash (flash pump stabilization time) 836tc(OSC) ns
(1) Not production tested.
(2) Specified values do NOT include rise/fall times. For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.

6.8 JTAG Scan Interface Timing

Table 6-6 JTAG Clock Specification 10-MHz and 50-pF Load on TDO Output(1)

MIN MAX UNIT
tc(JTAG) Cycle time, JTAG low and high period 50 ns
tsu(TDI/TMS - TCKr) Setup time, TDI, TMS before TCK rise (TCKr) 15 ns
th(TCKr -TDI/TMS) Hold time, TDI, TMS after TCKr 15 ns
th(TCKf -TDO) Hold time, TDO after TCKf 10 ns
td(TCKf -TDO) Delay time, TDO valid after TCK fall (TCKf) 45 ns
(1) Not production tested.
SM470R1B1M-HT td_jtag_scan_tdz046.gifFigure 6-6 JTAG Scan Timings

6.9 Output Timings

Table 6-7 Switching Characteristics for Output Timings versus Load Capacitance (CL)(1)

(see Figure 6-7)
PARAMETER MIN MAX UNIT
tr Rise time, AWD, CLKOUT, TDI, TDO, TMS, TMS2 CL = 15 pF 0.5 2.5 ns
CL = 50 pF 1.5 5.0
CL = 100 pF 3.0 9.0
CL = 150 pF 4.5 12.5
tf Fall time, AWD, CLKOUT, TDI, TDO, TMS, TMS2 CL = 15 pF 0.5 2.5 ns
CL = 50 pF 1.5 5.0
CL = 100 pF 3.0 9.0
CL = 150 pF 4.5 12.5
tr Rise time, RST CL = 15 pF 2.5 8 ns
CL = 50 pF 5 14
CL = 100 pF 9 23
CL = 150 pF 13 32
tr Rise time, 4-mA, 5-V tolerant pins CL = 15 pF 3 10 ns
CL = 50 pF 3.5 12
CL = 100 pF 7 21
CL = 150 pF 9 28
CL = 400 pF 18 40
tf Fall time, 4-mA, 5-V tolerant pins CL = 15 pF 2 8 ns
CL = 50 pF 2.5 9
CL = 100 pF 8 25
CL = 150 pF 11 35
CL = 400 pF 20 45
tr Rise time, all other output pins CL = 15 pF 2.5 10 ns
CL = 50 pF 6.0 25
CL = 100 pF 12 45
CL = 150 pF 18 65
tf Fall time, all other output pins CL = 15 pF 3 10 ns
CL = 50 pF 8.5 25
CL = 100 pF 16 45
CL = 150 pF 23 65
(1) Not production tested.
SM470R1B1M-HT cmos_lvl_out_tdz046.gifFigure 6-7 CMOS-Level Outputs

6.10 Input Timings

Table 6-8 Timing Requirements for Input Timings(1)(2)

(see Figure 6-8)
MIN MAX UNIT
tpw Input minimum pulse width tc(ICLK) + 10 ns
(1) Not production tested.
(2) tc(ICLK) = interface clock cycle time = 1/ƒ(ICLK)
SM470R1B1M-HT cmos_lvl_in_tdz046.gifFigure 6-8 CMOS-Level Inputs

6.11 Flash Timings

Table 6-9 Timing Requirements for Program Flash(1)(2)

MIN TYP MAX UNIT
tprog(16-bit) Half word (16-bit) programming time 4 16 200 µs
tprog(Total) 1MB programming time(3) 8 32 s
terase(sector) Sector erase time, TA = –40°C to 150°C 1.7 s
twec Write/erase cycles at TA = –40°C to 85°C 50000 cycles
tfp(RST) Flash pump settling time from RST to SLEEP 167tc(SYS) ns
tfp(SLEEP) Initial flash pump settling time from SLEEP to STANDBY 167tc(SYS) ns
tfp(STANDBY) Initial flash pump settling time from STANDBY to ACTIVE 84tc(SYS) ns
(1) Not production tested.
(2) For more detailed information on the flash core sectors, see the flash program and erase section of this data sheet.
(3) The 1MB programming time includes overhead of state machine.

6.12 SPIn Master Mode Timing Parameters

Table 6-10 SPIn Master Mode External Timing Parameters

(CLOCK PHASE = 0, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(1)(2)(3)(4) (see Figure 6-9)
NO. MIN MAX UNIT
1 tc(SPC)M Cycle time, SPInCLK(5) 100 256tc(ICLK) ns
2(6) tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5
tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5
3(6) tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5
tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5
4(6) td(SPCH-SIMO)M Delay time, SPInCLK high to SPInSIMO valid (clock polarity = 0) 10
td(SPCL-SIMO)M Delay time, SPInCLK low to SPInSIMO valid (clock polarity = 1) 10
5(6) tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low (clock polarity = 0) tc(SPC)M – 5 – tf
tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high (clock polarity = 1) tc(SPC)M – 5 – tr
6(6) tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low (clock polarity = 0) 6
tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high (clock polarity = 1) 6
7(6) tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low (clock polarity = 0) 4
tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high (clock polarity = 1) 4
(1) Not production tested.
(2) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.
(3) tc(ICLK) = interface clock cycle time = 1 / ƒ(ICLK)
(4) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.
(5) When the SPI is in master mode, the following must be true:
For PS values from 1 to 255: t c(SPC)M ≥(PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.
For PS values of 0: tc(SPC)M = 2t c(ICLK) ≥ 100 ns.
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).
SM470R1B1M-HT td_spi0_mstr_tdz046.gifFigure 6-9 SPIn Master Mode External Timing (CLOCK PHASE = 0)

Table 6-11 SPIn Master Mode External Timing Parameters(1)

(CLOCK PHASE = 1, SPInCLK = output, SPInSIMO = output, and SPInSOMI = input)(2)(3)(4) (see Figure 6-10)
NO. MIN MAX UNIT
1 tc(SPC)M Cycle time, SPInCLK(5) 100 256tc(ICLK) ns
2(6) tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5
tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5
3(6) tw(SPCL)M Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)M – tf 0.5tc(SPC)M + 5
tw(SPCH)M Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)M – tr 0.5tc(SPC)M + 5
4(6) tv(SIMO-SPCH)M Valid time, SPInCLK high after SPInSIMO data valid
(clock polarity = 0)
0.5tc(SPC)M – 10
tv(SIMO-SPCL)M Valid time, SPInCLK low after SPInSIMO data valid
(clock polarity = 1)
0.5tc(SPC)M – 10
5(6) tv(SPCH-SIMO)M Valid time, SPInSIMO data valid after SPInCLK high
(clock polarity = 0)
0.5tc(SPC)M – 5 – tr
tv(SPCL-SIMO)M Valid time, SPInSIMO data valid after SPInCLK low
(clock polarity = 1)
0.5tc(SPC)M – 5 – tf
6(6) tsu(SOMI-SPCH)M Setup time, SPInSOMI before SPInCLK high
(clock polarity = 0)
6
tsu(SOMI-SPCL)M Setup time, SPInSOMI before SPInCLK low
(clock polarity = 1)
6
7(6) tv(SPCH-SOMI)M Valid time, SPInSOMI data valid after SPInCLK high
(clock polarity = 0)
4
tv(SPCL-SOMI)M Valid time, SPInSOMI data valid after SPInCLK low
(clock polarity = 1)
4
(1) Not production tested.
(2) The MASTER bit (SPInCTRL2.3) is set and the CLOCK PHASE bit (SPInCTRL2.0) is set.
(3) tc(ICLK) = interface clock cycle time = 1/ƒ(ICLK)
(4) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.
(5) When the SPI is in master mode, the following must be true:
For PS values from 1 to 255: t c(SPC)M ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.
For PS values of 0: tc(SPC)M = 2t c(ICLK) ≥ 100 ns.
(6) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).
SM470R1B1M-HT td_spi1_mstr_tdz046.gifFigure 6-10 SPIn Master Mode External Timing (CLOCK PHASE = 1)

6.13 SPIn Slave Mode Timing Parameters

Table 6-12 SPIn Slave Mode External Timing Parameters(1)

(CLOCK PHASE = 0, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(2)(3)(4)(5) (see Figure 6-11)
NO. MIN MAX UNIT
1 tc(SPC)S Cycle time, SPInCLK(6) 100 256tc(ICLK) ns
2(7) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
3(7) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
4(7) td(SPCH-SOMI)S Delay time, SPInCLK high to SPInSOMI valid
(clock polarity = 0)
6 + tr
td(SPCL-SOMI)S Delay time, SPInCLK low to SPInSOMI valid
(clock polarity = 1)
6 + tf
5(7) tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high
(clock polarity = 0)
tc(SPC)S – 6 – tr
tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low
(clock polarity = 1)
tc(SPC)S – 6 – tf
6(7) tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low
(clock polarity = 0)
6
tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high
(clock polarity = 1)
6
7(7) tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low
(clock polarity = 0)
6
tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high
(clock polarity = 1)
6
(1) Not production tested.
(2) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is cleared.
(3) If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].
(4) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.
(5) tc(ICLK) = interface clock cycle time = 1/ƒ(ICLK)
(6) When the SPIn is in slave mode, the following must be true:
For PS values from 1 to 255: t c(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.
For PS values of 0: tc(SPC)S = 2t c(ICLK) ≥ 100 ns.
(7) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).
SM470R1B1M-HT td_spi0_slv_tdz046.gifFigure 6-11 SPIn Slave Mode External Timing (CLOCK PHASE = 0)

Table 6-13 SPIn Slave Mode External Timing Parameters(1)

(CLOCK PHASE = 1, SPInCLK = input, SPInSIMO = input, and SPInSOMI = output)(2)(3)(4)(5) (see Figure 6-12)
NO. MIN MAX UNIT
1 tc(SPC)S Cycle time, SPInCLK(6) 100 256tc(ICLK) ns
2(7) tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
3(7) tw(SPCL)S Pulse duration, SPInCLK low (clock polarity = 0) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
tw(SPCH)S Pulse duration, SPInCLK high (clock polarity = 1) 0.5tc(SPC)S – 0.25tc(ICLK) 0.5tc(SPC)S + 0.25tc(ICLK)
4(7) tv(SOMI-SPCH)S Valid time, SPInCLK high after SPInSOMI data valid
(clock polarity = 0)
0.5tc(SPC)S – 6 – tr
tv(SOMI-SPCL)S Valid time, SPInCLK low after SPInSOMI data valid
(clock polarity = 1)
0.5tc(SPC)S – 6 – tf
5(7) tv(SPCH-SOMI)S Valid time, SPInSOMI data valid after SPInCLK high
(clock polarity = 0)
0.5tc(SPC)S – 6 – tr
tv(SPCL-SOMI)S Valid time, SPInSOMI data valid after SPInCLK low
(clock polarity = 1)
0.5tc(SPC)S – 6 – tf
6(7) tsu(SIMO-SPCH)S Setup time, SPInSIMO before SPInCLK high
(clock polarity = 0)
6
tsu(SIMO-SPCL)S Setup time, SPInSIMO before SPInCLK low
(clock polarity = 1)
6
7(7) tv(SPCH-SIMO)S Valid time, SPInSIMO data valid after SPInCLK high
(clock polarity = 0)
6
tv(SPCL-SIMO)S Valid time, SPInSIMO data valid after SPInCLK low
(clock polarity = 1)
6
(1) Not production tested.
(2) The MASTER bit (SPInCTRL2.3) is cleared and the CLOCK PHASE bit (SPInCTRL2.0) is set.
(3) If the SPI is in slave mode, the following must be true: tc(SPC) ≥ (PS + 1) tc(ICLK), where PS = prescale value set in SPInCTL1[12:5].
(4) For rise and fall timings, see the "Switching Characteristics for Output Timings versus Load Capacitance" table.
(5) tc(ICLK) = interface clock cycle time = 1/ƒ(ICLK)
(6) When the SPIn is in slave mode, the following must be true:
For PS values from 1 to 255: t c(SPC)S ≥ (PS +1)tc(ICLK) ≥ 100 ns, where PS is the prescale value set in the SPInCTL1[12:5] register bits.
For PS values of 0: tc(SPC)S = 2t c(ICLK) ≥ 100 ns.
(7) The active edge of the SPInCLK signal referenced is controlled by the CLOCK POLARITY bit (SPInCTRL2.1).
SM470R1B1M-HT td_spi1_slv_tdz046.gifFigure 6-12 SPIn Slave Mode External Timing (CLOCK PHASE = 1)

6.14 SCIN Isosynchronous Mode Timings - Internal Clock

Table 6-14 Timing Requirements for Internal Clock SCIN Isosynchronous Mode(1)(2)(3)(4)

(see Figure 6-13)
(BAUD + 1)
IS EVEN OR BAUD = 0
(BAUD + 1)
IS ODD AND BAUD ≠ 0
UNIT
MIN MAX MIN MAX
tc(SCC) Cycle time, SCInCLK 2tc(ICLK) 224 tc(ICLK) 3tc(ICLK) (224 – 1) tc(ICLK) ns
tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – tf 0.5tc(SCC) + 5 0.5tc(SCC) + 0.5tc(ICLK) – tf 0.5tc(SCC) + 0.5tc(ICLK) ns
tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – tr 0.5tc(SCC) + 5 0.5tc(SCC) – 0.5tc(ICLK) – tr 0.5tc(SCC) – 0.5tc(ICLK) ns
td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 10 10 ns
tv(TX) Valid time, SCInTX data after SCInCLK low tc(SCC) – 10 tc(SCC) – 10 ns
tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low tc(ICLK) + tf + 20 tc(ICLK) + tf + 20 ns
tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low –tc(ICLK) + tf + 20 –tc(ICLK) + tf + 20 ns
(1) Not production tested.
(2) BAUD = 24-bit concatenated value formed by the SCI[H,M,L]BAUD registers.
(3) tc(ICLK) = interface clock cycle time = 1 / ƒ(ICLK)
(4) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
SM470R1B1M-HT td_sci_isoin_tdz046.gif

NOTE:

Data transmission/reception characteristics for isosynchronous mode with internal clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK falling edge.
Figure 6-13 SCIn Isosynchronous Mode Timing Diagram for Internal Clock

6.15 SCIN Isosynchronous Mode Timings - External Clock

Table 6-15 Timing Requirements for External Clock SCIN Isosynchronous Mode(1)(2)(3)

(see Figure 6-14)
MIN MAX UNIT
tc(SCC) Cycle time, SCInCLK(4) 8tc(ICLK) ns
tw(SCCH) Pulse duration, SCInCLK high 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns
tw(SCCL) Pulse duration, SCInCLK low 0.5tc(SCC) – 0.25tc(ICLK) 0.5tc(SCC) + 0.25tc(ICLK) ns
td(SCCH-TXV) Delay time, SCInCLK high to SCInTX valid 2tc(ICLK) + 12 + t r ns
tv(TX) Valid time, SCInTX data after SCInCLK low 2tc(SCC) – 10 ns
tsu(RX-SCCL) Setup time, SCInRX before SCInCLK low 0 ns
tv(SCCL-RX) Valid time, SCInRX data after SCInCLK low 2tc(ICLK) + 10 ns
(1) Not production tested.
(2) tc(ICLK) = interface clock cycle time = 1/ƒ(ICLK)
(3) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table.
(4) When driving an external SCInCLK, the following must be true: tc(SCC) ≥ 8tc(ICLK).
SM470R1B1M-HT td_sci_isoxt_tdz046.gif
A. Data transmission / reception characteristics for isosynchronous mode with external clocking are similar to the asynchronous mode. Data transmission occurs on the SCICLK rising edge, and data reception occurs on the SCICLK falling edge.
Figure 6-14 SCIn Isosynchronous Mode Timing Diagram for External Clock

6.16 I2C Timing

Table 6-16 Assumes testing over recommended operating conditions.

Table 6-16 I2C Signals (SDA and SCL) Switching Characteristics(1)(2)

PARAMETER STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
tc(I2CCLK) Cycle time, I2C module clock 75 150 75 150 ns
tc(SCL) Cycle time, SCL 10 2.5 µs
tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs
th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated START condition) 4 0.6 µs
tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs
tw(SCLH) Pulse duration, SCL high 4 0.6 µs
tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 ns
th(SDA-SCLL) Hold time, SDA valid after SCL low For I2C bus devices 0 3.45(3) 0 0.9 µs
tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 µs
tr(SCL) Rise time, SCL 1000 20+0.1Cb(4) 300 ns
tr(SDA) Rise time, SDA 1000 20+0.1Cb(4) 300 ns
tf(SCL) Fall time, SCL 300 20+0.1Cb(4) 300 ns
tf(SDA) Fall time, SDA 300 20+0.1Cb(4) 300 ns
tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 4.0 0.6 µs
tw(SP) Pulse duration, spike (must be suppressed) 0 50 ns
Cb(4) Capacitive load for each bus line 400 400 pF
(1) Not production tested.
(2) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.
(3) The maximum th(SDA-SCLL) for I2C bus devices needs to be met only if the device does not stretch the low period (tw(SCLL)) of the SCL signal.
(4) C b = The total capacitance of one bus line in pF. If mixed with HS=mode devices, faster fall-times are allowed.
SM470R1B1M-HT td_i2c_tdz046.gif
A. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
B. The maximum th(SDA-SCLL) needs only be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal.
C. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH).
D. Cb = total capacitance of one bus line in pF. If mixed with HS=mode devices, faster fall-times are allowed.
Figure 6-15 I2C Timings

6.17 Standard Can Controller (SCC) Mode Timings

Table 6-17 Dynamic Characteristics for the CANSTX and CANSRX Pins(1)

PARAMETER MIN MAX UNIT
td(CANSTX) Delay time, transmit shift register to CANSTX pin(2) 15 ns
td(CANSRX) Delay time, CANSRX pin to receive shift register 5 ns
(1) Not production tested.
(2) These values do not include the rise/fall times of the output buffer.

6.18 Expansion Bus Module Timing

Table 6-18 Expansion Bus Timing Parameters(1)

–55°C ≤ TA ≤ 220°C, 3.0 V ≤ V CC ≤ 3.6 V (see Figure 6-16 and Figure 6-17)
MIN MAX UNIT
tc(CO) Cycle time, CLKOUT 20.8 ns
td(COH-EBADV) Delay time, CLKOUT high to EBADDR valid 21.4 ns
th(COH-EBADIV) Hold time, EBADDR invalid after CLKOUT high 12.4 ns
td(COH-EBOE) Delay time, CLKOUT high to EBOE fall 11.4 ns
th(COH-EBOEH) Hold time, EBOE rise after CLKOUT high 11.4 ns
td(COL-EBWR) Delay time, CLKOUT low to write strobe (EBWR) low 11.3 ns
th(COL-EBWRH) Hold time, EBWR high after CLKOUT low 11.6 ns
tsu(EBRDATV-COH) Setup time, EBDATA valid before CLKOUT high (READ)(2) 15.2 ns
th(COH-EBRDATIV) Hold time, EBDATA invalid after CLKOUT high (READ) (–14.7) ns
td(COL-EBWDATV) Delay time, CLKOUT low to EBDATA valid (WRITE)(3) 16.1 ns
th(COL-EBWDATIV) Hold time, EBDATA invalid after CLKOUT low (WRITE) 14.7 ns
SECONDARY TIMES
td(COH-EBCS0) Delay, CLKOUT high to EBCS0 fall 13.6 ns
th(COH-EBCS0H) Hold, EBCS0 rise after CLKOUT high 13.2 ns
tsu(COH-EBHOLDL) Setup time, EBHOLD low to CLKOUT high(2) 10.9 ns
tsu(COH-EBHOLDH) Setup time, EBHOLD high to CLKOUT high(2) 10.5 ns
(1) Not production tested.
(2) Setup time is the minimum time under worst case conditions. Data with less setup time will not work.
(3) Valid after CLKOUT goes low for write cycles.
SM470R1B1M-HT td_xbus_read_tdz046.gifFigure 6-16 Expansion Memory Signal Timing - Reads
SM470R1B1M-HT tx_xbus_wrt_tdz046.gifFigure 6-17 Expansion Memory Signal Timing - Writes

6.19 Multi-Buffered A-to-D Converter (MibADC)

The multi-buffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry, which could be present on V SS and V CC , from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to AD REFLO unless otherwise noted.

Resolution 10 bits (1024 values)
Monotonic Assured
Output conversion code 00h to 3FFh [00 for VAI ≤ AD REFLO ; 3FF for VAI ≥ AD REFHI ]

Table 6-19 MibADC Recommended Operating Conditions(1)

MIN MAX UNIT
ADREFHI A-to-D high-voltage reference source VSSAD VCCAD V
ADREFLO A-to-D low-voltage reference source VSSAD VCCAD V
VAI Analog input voltage VSSAD – 0.3 VCCAD + 0.3 V
IAIC Analog input clamp current(2)
(VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3)
–2 2 mA
(1) For VCCAD and VSSAD recommended operating conditions, see the "Device Recommended Operating Conditions" table.
(2) Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.

Table 6-20 Operating Characteristics over Full Ranges of Recommended Operating Conditions(1)(2)(3)(4)

PARAMETER DESCRIPTION/CONDITIONS MIN TYP MAX UNIT
RI Analog input resistance See Figure 6-18. 250 500 Ω
CI Analog input capacitance See Figure 6-18. Conversion 10 pF
Sampling 30 pF
IAIL Analog input leakage current See Figure 6-18. –1 1 µA
IADREFHI ADREFHI input current ADREFHI = 3.6 V, ADREFLO = VSSAD 5 mA
CR Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO 3 3.6 V
EDNL Differential nonlinearity error Difference between the actual step width and the ideal value. See Figure 6-19. ±1.5 LSB
EINL Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. See Figure 6-20. ±2 LSB
E TOT Total error/Absolute accuracy Maximum value of the difference between an analog value and the ideal midstep value. See Figure 6-21. ±2.5 LSB
(1) Not production tested.
(2) INL and DNL values are valid for a max ADCCLK frequency of 15 MHz. For frequencies greater than 15 MHz missing codes are expected at higher temperature.
(3) VCCAD = ADREFHI
(4) 1 LSB = (ADREFHI - ADREFLO)/210 for the MibADC
SM470R1B1M-HT mibadc_npt_tdz046.gifFigure 6-18 MibADC Input Equivalent Circuit

Table 6-21 Multi-Buffer ADC Timing Requirements(1)

MIN NOM MAX UNIT
tc(ADCLK) Cycle time, MibADC clock 0.067 µs
td(SH) Delay time, sample and hold time 1 µs
td(c) Delay time, conversion time 0.55 µs
td(SHC)(2) Delay time, total sample/hold and conversion time 1.55 µs
(1) Not production tested.
(2) This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors; for more details, see the TMS470R1x Multi-Buffered Analog-to-Digital Converter (MibADC) Reference Guide (SPNU206).

The differential nonlinearity error shown in Figure 6-19 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB.

SM470R1B1M-HT dnl_tdz046.gif
A. 1 LSB = (ADREFHI – ADREFLO) / 210
Figure 6-19 Differential Nonlinearity (DNL)

The integral nonlinearity error shown in Figure 6-20 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line.

SM470R1B1M-HT inl_tdz046.gif
A. 1 LSB = (ADREFHI – ADREFLO) / 210
Figure 6-20 Integral Nonlinearity (INL) Error

The absolute accuracy or total error of an MibADC as shown in Figure 6-21 is the maximum value of the difference between an analog value and the ideal midstep value.

SM470R1B1M-HT abs_accuracy_tdz046.gif
A. 1 LSB = (ADREFHI – ADREFLO) / 210
Figure 6-21 Absolute Accuracy (Total) Error