SNVS903B December   2012  – May 2016 SM74611

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 From t0 to t1
      2. 7.3.2 At t1
      3. 7.3.3 From t1 to t2
      4. 7.3.4 At t2
    4. 7.4 Device Functional Modes
      1. 7.4.1 FET Q1 OFF
      2. 7.4.2 FET Q1 ON
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

9 Power Supply Recommendations

The SM74611 is designed to be implemented as bypass diode in photovoltaic modules. System designer must ensure that the voltage level from solar modules does not exceed 28 V. At the time of this writing, the applicable specifications include IEC61215, IEC61646, EN 50548, IEC62790, and UL3730. This is because the SM74611 can protect against a maximum of –28 V as a bypass diode. The internal MOSFET of SM74611 can pass up to 15-A current. Drawing more current can damage the internal MOSFET permanently.