SLLSFM1 September   2022 SN6507-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics, SN6507-Q1
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Push-Pull Converter
      2. 8.3.2 Core Magnetization
      3. 8.3.3 Duty Cycle Control
      4.      Programmable Switching Frequency
      5. 8.3.4 Spread Spectrum Clocking
      6. 8.3.5 Slew Rate Control
      7. 8.3.6 Protection Features
        1. 8.3.6.1 Over Voltage Protection (OVP)
        2. 8.3.6.2 Over Current and Short Circuit Protection (OCP)
        3. 8.3.6.3 Under Voltage Lock-Out (UVLO)
        4. 8.3.6.4 Thermal Shut Down (TSD)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Start-Up Mode
        1. 8.4.1.1 Soft-Start
      2. 8.4.2 Operation Mode
      3. 8.4.3 Shutdown Mode
      4. 8.4.4 SYNC Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Pin Configuration
        2. 9.2.2.2 LDO Selection
        3. 9.2.2.3 Diode Selection
        4. 9.2.2.4 Capacitor and Inductor Selection
        5. 9.2.2.5 Transformer Selection
          1. 9.2.2.5.1 V-t Product Calculation
          2. 9.2.2.5.2 Turns Ratio Estimate
        6. 9.2.2.6 Low-Emissions Designs
      3. 9.2.3 Application Curves
      4. 9.2.4 System Examples
        1. 9.2.4.1 Higher Output Voltage Designs
        2. 9.2.4.2 Commercially-Available Transformers
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Low-Emissions Designs

For isolated power supply designs requiring low levels of radiated and conducted emissions, the following recommendations can help minimize emissions from SN6507-Q1 and its surrounding components:

  • Ensure a push-pull isolation transformer with low parasitics, like leakage inductance and parasitic capacitances, is used to minimize common-mode currents across the isolation barrier and antenna effects in the system.

  • Use low-emissions rectifier diodes with low recovery times, like PMEG200G20ELRX or equivalent.

  • Configure SN6507-Q1 for its slowest slew-rate setting to minimize high-frequency content in the switching paths.

  • Include a snubber circuit on the secondary-side of the isolation transformer to filter high-frequency content in the switching paths.

Using these configurations may each affect system-level efficiency. The SN6507DGQEVM can be used to evaluate these design options.