SLLS934F November 2008 – November 2015 SN65HVD11-HT
PRODUCTION DATA.
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC | Supply voltage | –0.3 | 6 | V | ||
Voltage at A or B | –9 | 14 | V | |||
Input voltage at D, DE, R, or RE | –0.5 | VCC + 0.5 | V | |||
Voltage input, transient pulse, A and B, through 100 Ω (see Figure 20) | –50 | 50 | V | |||
IO | Receiver output current | –11 | 11 | mA | ||
Continuous total power dissipation | See Thermal Information |
VALUE | UNIT | ||||
---|---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | A, B, and GND | ±16000 | V |
All pins | ±4000 | ||||
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VCC | Supply voltage | 3 | 3.6 | V | ||
VI or VIC | Voltage at any bus terminal (separately or common-mode) | –7(1) | 12 | V | ||
VIH | High-level input voltage | D, DE, RE | 2 | VCC | V | |
VIL | Low-level input voltage | D, DE, RE | 0 | 0.8 | V | |
VID | Differential input voltage | Figure 16 | –12 | 12 | V | |
IOH | High-level output current | Driver | –60 | mA | ||
Receiver | –8 | |||||
IOL | Low-level output current | Driver | 60 | mA | ||
Receiver | 8 | |||||
RL | Differential load resistance | 54 | 60 | Ω | ||
CL | Differential load capacitance | 50 | pF | |||
Signaling rate | 10 | Mbps | ||||
TJ(2) | Operating junction temperature | TA = –55°C to 125°C | 129 | °C | ||
TA = 175°C | 179 | |||||
TA = 210°C | 214 |
THERMAL METRIC(1) | SN65HVD11-HT | UNIT | ||||
---|---|---|---|---|---|---|
D (SOIC) | JD (CDIP SB) | HKJ (CFP) | HKQ (CFP) | |||
8 PINS | 8 PINS | 8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 101.5 | 73.9 | N/A | 170 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 53.6 | N/A | N/A | 6.2 | °C/W |
RθJB | Junction-to-board thermal resistance | 45.1 | 39.8 | N/A | 195 | °C/W |
ψJT | Junction-to-top characterization parameter | 4.8 | 6.9 | N/A | 3.8 | °C/W |
ψJB | Junction-to-board characterization parameter | 41.8 | 49.2 | N/A | 146.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | N/A | 9.1 | 6.2 | N/A | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||||
---|---|---|---|---|---|---|---|---|---|
VIK | Input clamp voltage | II = –18 mA | –1.5 | V | |||||
|VOD| | Differential output voltage | IO = 0 | 2 | VCC | V | ||||
RL = 54 Ω, See Figure 10 | 1 | ||||||||
Vtest = –7 V to 12 V, See Figure 11 |
1 | ||||||||
Δ|VOD| | Change in magnitude of differential output voltage | Vtest = –7 V to 12 V, See Figure 10 and Figure 11 |
–0.2 | 0.2 | V | ||||
VOC(PP) | Peak-to-peak common mode output voltage | See Figure 12 | 400 | mV | |||||
VOC(SS) | Steady-state common mode output voltage | See Figure 12 | 1.4 | 2.5 | V | ||||
ΔVOC(SS) | Change in steady-state common mode output voltage | See Figure 12 | –0.06 | 0.06 | V | ||||
IOZ | High-impedance output current | See receiver input currents | |||||||
II | Input current | D | TA = –55°C to 125°C | –100 | 0 | μA | |||
TA = 175°C(1) | –100 | 3 | |||||||
TA = 210°C(2) | –100 | 3 | |||||||
DE | 0 | 100 | |||||||
IOS | Short circuit output current | –7 V ≤ VO ≤ 12 V | –250 | 250 | mA | ||||
C(OD) | Differential output capacitance | VOD = 0.4 sin (4E6πt) + 0.5 V, DE = 0 V |
18 | pF | |||||
ICC | Supply current | RE = VCC, D and DE = VCC, No load |
Receiver disabled and driver enabled | TA = –55°C to 125°C | 11 | 15.5 | mA | ||
TA = 175°C(1) | 11.5 | 17.5 | |||||||
TA = 210°C(2) | 14 | 18 | |||||||
RE = VCC, D = VCC, DE = 0 V, No load |
Receiver disabled and driver disabled (standby) | TA = –55°C to 125°C | 2.5 | 20 | μA | ||||
TA = 175°C(1) | 20 | 150 | |||||||
TA = 210°C(2) | 175 | 450 | |||||||
RE = 0 V, D and DE = VCC, No load |
Receiver enabled and driver enabled | TA = –55°C to 125°C | 11 | 15.5 | mA | ||||
TA = 175°C(1) | 11 | 17.5 | |||||||
TA = 210°C(2) | 11 | 18 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
VIT+ | Positive-going input threshold voltage | IO = –8 mA | –0.01 | V | ||||
VIT– | Negative-going input threshold voltage | IO = 8 mA | –0.2 | V | ||||
Vhys | Hysteresis voltage (VIT+ –VIT–) |
TA = –55°C to 125°C | 35 | mV | ||||
TA = 175°C(1) | 41 | |||||||
TA = 210°C(2) | 41 | |||||||
VIK | Enable-input clamp voltage | II = –18 mA | –1.5 | V | ||||
VOH | High-level output voltage | VID = 200 mV, IOH = –8 mA, See Figure 16 |
2.4 | V | ||||
VOL | Low-level output voltage | VID = –200 mV, IOL = 8 mA, See Figure 16 |
0.4 | V | ||||
IOZ | High-impedance state output current | VO = 0 or VCC,RE = VCC | –1 | 1 | μA | |||
II | Bus input current | VA or VB = 12 V | Other input at 0 V |
TA = –55°C to 125°C | 0.075 | 0.11 | mA | |
TA = 175°C(1) | 0.1 | 0.15 | ||||||
TA = 210°C(2) | 0.1 | 0.15 | ||||||
VA or VB = 12 V, VCC = 0 V |
TA = –55°C to 125°C | 0.085 | 0.13 | |||||
TA = 175°C(1) | 0.12 | 0.16 | ||||||
TA = 210°C(2) | 0.12 | 0.16 | ||||||
VA or VB = –7 V | TA = –55°C to 125°C | –0.1 | –0.05 | |||||
TA = 175°C(1) | –0.3 | –0.15 | ||||||
TA = 210°C(2) | –0.3 | –0.15 | ||||||
VA or VB = –7 V, VCC = 0 V |
TA = –55°C to 125°C | –0.1 | –0.05 | |||||
TA = 175°C(1) | –0.3 | –0.15 | ||||||
TA = 210°C(2) | –0.3 | –0.15 | ||||||
IIH | High-level input current, RE | VIH = 2 V | TA = –55°C to 125°C | –30 | 0 | μA | ||
TA = 175°C(1) | –30 | 3 | ||||||
TA = 210°C(2) | –30 | 3 | ||||||
IIL | Low-level input current, RE | VIL = 0.8 V | –30 | 0 | μA | |||
CID | Differential input capacitance | VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V |
TA = –55°C to 125°C | 15 | pF | |||
TA = 175°C(1) | 18 | |||||||
TA = 210°C(2) | 18 | |||||||
ICC | Supply current | RE = 0 V, D and DE = 0 V, No load |
Receiver enabled and driver disabled | TA = –55°C to 125°C | 5 | 8 | mA | |
TA = 175°C(1) | 7.5 | 8.5 | ||||||
TA = 210°C(2) | 7.5 | 10 | ||||||
RE = VCC, D = VCC, DE = 0 V, No load |
Receiver disabled and driver disabled (standby) | TA = –55°C to 125°C | 2.5 | 20 | μA | |||
TA = 175°C(1) | 12.5 | 200 | ||||||
TA = 210°C(2) | 175 | 450 | ||||||
RE = 0 V, D and DE = VCC, No load |
Receiver enabled and driver enabled | TA = –55°C to 125°C | 11 | 15.5 | mA | |||
TA = 175°C(1) | 11.5 | 17.5 | ||||||
TA = 210°C(2) | 14 | 18 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
tPLH | Propagation delay time, low-to-high-level output | RL = 54 Ω, CL = 50 pF, See Figure 13 |
18 | 25 | 40 | ns | ||
tPHL | Propagation delay time, high-to-low-level output | 18 | 25 | 40 | ns | |||
tr | Differential output signal rise time | TA = –55°C to 125°C | 10 | 21 | 30 | ns | ||
TA = 175°C(1) | 10 | 22 | 30 | |||||
TA = 210°C(2) | 10 | 22 | 30 | |||||
tf | Differential output signal fall time | TA = –55°C to 125°C | 10 | 21 | 30 | ns | ||
TA = 175°C(1) | 10 | 22 | 30 | |||||
TA = 210°C(2) | 10 | 22 | 30 | |||||
tsk(p) | Pulse skew (|tPHL – tPLH|) | 2.5 | ns | |||||
tsk(pp)(3) | Part-to-part skew (tPHL or tPLH) | 11 | ns | |||||
tPZH | Propagation delay time, high-impedance to high-level output | RL = 110 Ω, RE = 0 V, See Figure 14 |
55 | ns | ||||
tPHZ | Propagation delay time, high-level to high-impedance output | 55 | ns | |||||
tPZL | Propagation delay time, high-impedance to low-level output | RL = 110 Ω, RE = 0 V, See Figure 15 |
55 | ns | ||||
tPLZ | Propagation delay time, low-level to high-impedance output | 75 | ns | |||||
tPZH | Propagation delay time, standby to high-level output | RL = 110 Ω, RE = 3 V, See Figure 14 |
6 | μs | ||||
tPZL | Propagation delay time, standby to low-level output | RL = 110 Ω, RE = 3 V, See Figure 15 |
6 | μs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
tPLH | Propagation delay time, low-to-high-level output | VID = –1.5 V to 1.5 V, CL = 15 pF, See Figure 17 |
30 | 55 | 70 | ns | ||
tPHL | Propagation delay time, high-to-low-level output | 30 | 55 | 70 | ns | |||
tsk(p) | Pulse skew (|tPHL – tPLH|) | 4 | ns | |||||
tsk(pp)(3) | Part-to-part skew | 15 | ns | |||||
tr | Output signal rise time | CL = 15 pF, See Figure 17 |
TA = –55°C to 125°C | 1 | 3 | 5 | ns | |
TA = 175°C(1) | 1 | 4 | 5 | |||||
TA = 210°C(2) | 1 | 4 | 5 | |||||
tf | Output signal fall time | TA = –55°C to 125°C | 1 | 3 | 5 | ns | ||
TA = 175°C(1) | 1 | 4 | 5 | |||||
TA = 210°C(2) | 1 | 4 | 5 | |||||
tPZH(2) | Output enable time to high level | CL = 15 pF, DE = 3 V, See Figure 18 |
15 | ns | ||||
tPZL(2) | Output enable time to low level | 15 | ns | |||||
tPHZ | Output disable time from high level | 20 | ns | |||||
tPLZ | Output disable time from low level | 15 | ns | |||||
tPZH(3) | Propagation delay time, standby-to-high-level output | CL = 15 pF, DE = 0, See Figure 19 |
6 | μs | ||||
tPZL(3) | Propagation delay time, standby-to-low-level output | 6 | μs |
xxx
NOTE:
The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.