SLOS346O MARCH   2001  – April 2018 SN65HVD230 , SN65HVD231 , SN65HVD232

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Equivalent Input and Output Schematic Diagrams
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics: Driver
    6. 8.6  Electrical Characteristics: Receiver
    7. 8.7  Switching Characteristics: Driver
    8. 8.8  Switching Characteristics: Receiver
    9. 8.9  Switching Characteristics: Device
    10. 8.10 Device Control-Pin Characteristics
    11. 8.11 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Vref Voltage Reference
      2. 10.3.2 Thermal Shutdown
    4. 10.4 Device Functional Modes
      1. 10.4.1 High-Speed Mode
      2. 10.4.2 Slope Control Mode
      3. 10.4.3 Standby Mode (Listen Only Mode) of the HVD230
      4. 10.4.4 The Babbling Idiot Protection of the HVD230
      5. 10.4.5 Sleep Mode of the HVD231
      6. 10.4.6 Summary of Device Operating Modes
  11. 11Application and Implementation
    1. 11.1 Application Information
      1. 11.1.1 CAN Bus States
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
        1. 11.2.1.1 CAN Termination
        2. 11.2.1.2 Loop Propagation Delay
        3. 11.2.1.3 Bus Loading, Length and Number of Nodes
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Transient Protection
        2. 11.2.2.2 Transient Voltage Suppressors
      3. 11.2.3 Application Curve
    3. 11.3 System Example
      1. 11.3.1 ISO 11898 Compliance of SN65HVD23x Family of 3.3 V CAN Transceivers
        1. 11.3.1.1 Introduction
        2. 11.3.1.2 Differential Signal
          1. 11.3.1.2.1 Common Mode Signal
        3. 11.3.1.3 Interoperability of 3.3-V CAN in 5-V CAN Systems
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Related Links
    2. 14.2 Receiving Notification of Documentation Updates
    3. 14.3 Community Resources
    4. 14.4 Trademarks
    5. 14.5 Electrostatic Discharge Caution
    6. 14.6 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Characteristics: Driver

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST
CONDITIONS
MIN TYP MAX UNIT
SN65HVD230 AND SN65HVD231
tPLH Propagation delay time, low-to-high-level output V(Rs) = 0 V CL = 50 pF,
See Figure 21
35 85 ns
RS with 10 kΩ to ground 70 125
RS with 100 kΩ to ground 500 870
tPHL Propagation delay time, high-to-low-level output V(Rs) = 0 V 70 120 ns
RS with 10 kΩ to ground 130 180
RS with 100 kΩ to ground 870 1200
tsk(p) Pulse skew (|tPHL - tPLH|) V(Rs) = 0 V 35 ns
RS with 10 kΩ to ground 60
RS with 100 kΩ to ground 370
tr Differential output signal rise time V(Rs) = 0 V 25 50 100 ns
tf Differential output signal fall time 40 55 80 ns
tr Differential output signal rise time RS with 10 kΩ to ground 80 120 160 ns
tf Differential output signal fall time 80 125 150 ns
tr Differential output signal rise time RS with 100 kΩ to ground 600 800 1200 ns
tf Differential output signal fall time 600 825 1000 ns
SN65HVD232
tPLH Propagation delay time, low-to-high-level output CL = 50 pF,
See Figure 21
35 85 ns
tPHL Propagation delay time, high-to-low-level output 70 120
tsk(p) Pulse skew (|tPHL - tPLH|) 35
tr Differential output signal rise time 25 50 100
tf Differential output signal fall time 40 55 80