SGLS367E September   2006  – September 2015 SN65HVD30-EP , SN65HVD33-EP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Driver
    6. 6.6  Electrical Characteristics: Receiver
    7. 6.7  Switching Characteristics: Driver
    8. 6.8  Switching Characteristics: Receiver
    9. 6.9  Receiver Equalization Characteristics
    10. 6.10 Dissipation Ratings
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Low-Power Standby Mode
      2. 8.3.2 Driver Output Current Limiting
      3. 8.3.3 Hot-Plugging
      4. 8.3.4 Receiver Failsafe
      5. 8.3.5 Safe Operation With Bus Contention
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Data Rate and Bus Length
        2. 9.2.1.2 Stub Length
        3. 9.2.1.3 Bus Loading
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1) (2)
MIN MAX UNIT
VCC Supply voltage range –0.3 6 V
V(A), V(B), V(Y), V(Z) Voltage range at any bus terminal (A, B, Y, Z) –9 14 V
V(TRANS) Voltage input, transient pulse through 100 Ω (see Figure 21) (A, B, Y, Z)(3) –50 50 V
VI Input voltage range (D, DE, RE) –0.5 7 V
PD(cont) Continuous total power dissipation Internally limited(4)
IO Output current (receiver output only, R) 11 mA
TJ Junction temperature 165 °C
Tstg Storage temperature range –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
(3) This tests survivability only and the output state of the receiver is not specified.
(4) The thermal shutdown protection circuit internally limits the continuous total power dissipation. Thermal shutdown typically occurs when the junction temperature reaches 165°C.

6.2 ESD Ratings

MIN UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) Bus pins and GND ±16000 V
All pins ±4000
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Supply voltage 3 3.6 V
VI or VIC Voltage at any bus terminal (separately or common mode) –7(1) 12 V
1/tUI Signaling rate 'HVD30, 'HVD33 25 Mbps
'HVD31, 'HVD34 5
'HVD32, 'HVD35 1
RL Differential load resistance 54 60 Ω
VIH High-level input voltage D, DE, RE 2 VCC V
VIL Low-level input voltage D, DE, RE 0 0.8 V
VID Differential input voltage –12 12 V
IOH High-level output current Driver –60 mA
Receiver –8
IOL Low-level output current Driver 60 mA
Receiver 8
TA Ambient still-air temperature –55 125(2) °C
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.
(2) Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

6.4 Thermal Information

THERMAL METRIC(1) D (SOIC) D (SOIC) UNIT
8 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 135 92 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 43 59 °C/W
RθJB Junction-to-board thermal resistance 44 61 °C/W
ψJT Junction-to-top characterization parameter 12.1 5.7 °C/W
ψJB Junction-to-board characterization parameter 49.7 30.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics: Driver

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VI(K) Input clamp voltage II = –18 mA –1.5 V
|VOD(SS)| Steady-state differential output voltage IO = 0 2.3 VCC + 0.1 V
RL = 54 Ω, See Figure 10 (RS-485) 1.5 2
RL = 100 Ω, See Figure 10 (RS-422) 2 2.3
Vtest = –7 V to 12 V, See Figure 11 1.5
Δ|VOD(SS)| Change in magnitude of steady-state differential output voltage between states RL = 54 Ω, See Figure 10 and Figure 11 –0.2 0.2 V
VOD(RING) Differential output voltage overshoot and undershoot RL = 54 Ω, CL = 50 pF, See Figure 14 and Figure 12 10%(2) V
VOC(PP) Peak-to-peak common-mode output voltage 'HVD30, 'HVD33 See Figure 13 0.5 V
'HVD31, 'HVD32, 'HVD34, 'HVD35 0.25
VOC(SS) Steady-state common-mode output voltage See Figure 13 1.6 2.3 V
ΔVOC(SS) Change in steady-state common-mode output voltage See Figure 13 –0.05 0.05 V
IZ(Z) or
IY(Z)
High-impedance state output current 'HVD30, 'HVD31, 'HVD32 VCC = 0 V, VZ or VY = 12 V,
Other input at 0 V
90 μA
VCC = 0 V, VZ or VY = –7 V,
Other input at 0 V
–10
'HVD33, 'HVD34, 'HVD35 VCC = 3 V or 0 V, DE = 0 V,
VZ or VY = 12 V
Other input
at 0 V
90
VCC = 3 V or 0 V, DE = 0 V,
VZ or VY = –7 V
–10
IZ(S) or
IY(S)
Short-circuit output current VZ or VY = –7 V Other input
at 0 V
±250 mA
VZ or VY = 12 V
II Input current D, DE 0 100 μA
C(OD) Differential output capacitance VOD = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V 16 pF
(1) All typical values at 25°C with 3.3-V supply
(2) 10% of the peak-to-peak differential output voltage swing, per TIA/EIA-485

6.6 Electrical Characteristics: Receiver

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VIT+ Positive-going differential input threshold voltage IO = –8 mA –0.02 V
VIT– Negative-going differential input threshold voltage 'HVD30 IO = 8 mA –0.15 V
'HVD33 -0.2
Vhys Hysteresis voltage (VIT+ – VIT–) 50 mV
VIK Enable-input clamp voltage II = –18 mA –1.5 V
VO Output voltage VID = 200 mV, IO = –8 mA, See Figure 17 2.4 V
VID = –200 mV, IO = 8 mA, See Figure 17 0.4
IO(Z) High-impedance-state output current VO = 0 or VCC, RE at VCC –1 1 μA
IA or IB Bus input current 'HVD31, 'HVD32,
'HVD34, 'HVD35
VA or VB = 12 V Other input
at 0 V
0.05 0.1 mA
VA or VB = 12 V, VCC = 0 V 0.06 0.1
VA or VB = –7 V –0.10 –0.04
VA or VB = –7 V, VCC = 0 V –0.10 –0.03
'HVD30, 'HVD33 VA or VB = 12 V Other input
at 0 V
0.20 0.35
VA or VB = 12 V, VCC = 0 V 0.24 0.4
VA or VB = –7 V –0.35 –0.18
VA or VB = –7 V, VCC = 0 V –0.25 –0.13
IIH Input current, RE VIH = 0.8 V or 2 V –60 μA
CID Differential input capacitance VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V 15 pF
SUPPLY CURRENT
ICC Supply current 'HVD30 D at 0 V or VCC and no load 2.1 mA
'HVD31, 'HVD32 6.4
'HVD33 RE at 0 V, D at 0 V or VCC, DE at 0 V,
No load (receiver enabled and driver disabled)
1.8
'HVD34, 'HVD35 2.2
'HVD33, 'HVD34, 'HVD35 RE at VCC, D at VCC, DE at 0 V,
No load (receiver disabled and driver disabled)
0.022 1.5 μA
'HVD33 RE at 0 V, D at 0 V or VCC, DE at VCC,
No load (receiver enabled and driver enabled)
2.1 mA
'HVD34, 'HVD35 6.5
'HVD33 RE at VCC, D at 0 V or VCC, DE at VCC
No load (receiver disabled and driver enabled)
1.8
'HVD34, 'HVD35 6.2
(1) All typical values at 25°C with 3.3-V supply

6.7 Switching Characteristics: Driver

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
tPLH Propagation delay time,
low- to high-level output
'HVD30, 'HVD33 RL = 54 Ω, CL = 50 pF,
See Figure 14
4 10 23 ns
'HVD31, 'HVD34 25 38 65
'HVD32, 'HVD35 120 175 305
tPHL Propagation delay time,
high- to low-level output
'HVD30, 'HVD33 4 9 23 ns
'HVD31, 'HVD34 25 38 65
'HVD32, 'HVD35 120 175 305
tr Differential output signal
rise time
'HVD30, 'HVD33 2.5 5 18 ns
'HVD31, 'HVD34 20 37 60
'HVD32, 'HVD35 120 185 300
tf Differential output signal
fall time
'HVD30, 'HVD33 2.5 5 18 ns
'HVD31, 'HVD34 20 35 60
'HVD32, 'HVD35 120 180 300
tsk(p) Pulse skew (|tPHL – tPLH|) 'HVD30, 'HVD33 0.6 ns
'HVD31, 'HVD34 2.0
'HVD32, 'HVD35 5.1
tPZH1 Propagation delay time, high-impedance to high-level output 'HVD33 RL = 110 Ω, RE at 0 V,
D = 3 V and S1 = Y, or
D = 0 V and S1 = Z,
See Figure 15
45 ns
'HVD34 235
'HVD35 490
tPHZ Propagation delay time, high-level to high-impedance output 'HVD33 25 ns
'HVD34 65
'HVD35 165
tPZL1 Propagation delay time, high-impedance to low-level output 'HVD33 RL = 110 Ω, RE at 0 V,
D = 3 V and S1 = Z, or
D = 0 V and S1 = Y,
See Figure 16
35 ns
'HVD34 190
'HVD35 490
tPLZ Propagation delay time, low-level to high-impedance output 'HVD33 30 ns
'HVD34 120
'HVD35 290
tPZH2 Propagation delay time, standby to high-level output 'HVD30 RL = 110 Ω, RE at 3 V,
D = 3 V and S1 = Y, or
D = 0 V and S1 = Z,
See Figure 15
4000 ns
'HVD33 5000
tPZL2 Propagation delay time, standby to low-level output 'HVD30 RL = 110 Ω, RE at 3 V,
D = 3 V and S1 = Z, or
D = 0 V and S1 = Y,
See Figure 16
4000 ns
'HVD33 5000
(1) All typical values at 25°C with 3.3-V supply

6.8 Switching Characteristics: Receiver

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPLH Propagation delay time,
low- to high-level output
'HVD30, 'HVD33 VID = –1.5 V to 1.5 V,
CL = 15 pF, See Figure 18
26 60 ns
'HVD31, 'HVD32, 'HVD34, 'HVD35 47 70
tPLH Propagation delay time,
high- to low-level output
'HVD30, 'HVD33 29 60 ns
'HVD31, 'HVD32, 'HVD34, 'HVD35 49 70
tsk(p) Pulse skew (|tPHL – tPLH|) 'HVD30, 'HVD33 12 ns
'HVD31, 'HVD34, 'HVD32, 'HVD35 10
tr Output signal rise time 'HVD30 10 ns
'HVD33 18
tf Output signal fall time 12.5 ns
tPHZ Output disable time from high level DE at 3 V CL = 15 pF,
See Figure 19
20 ns
tPZH1 Output enable time to high level 20 ns
tPZH2 Propagation delay time, standby to high-level output 'HVD30 DE at 0 V 4000 ns
'HVD33 5000
tPLZ Output disable time from low level DE at 3 V CL = 15 pF,
See Figure 20
20 ns
tPZL1 Output enable time to low level 20 ns
tPZL2 Propagation delay time, standby to low-level output 'HVD30 DE at 0 V 4000 ns
'HVD33 5000 ns

6.9 Receiver Equalization Characteristics

over recommended operating conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS DEVICE MIN TYP(1) MAX UNIT
tj(pp) Peak-to-peak
eye-pattern jitter
Pseudo-random NRZ code with a bit pattern length of 216 – 1, Belden 3105A cable 25 Mbps 100 m 'HVD33(2) PREVIEW ns
150 m 'HVD33(2) PREVIEW
200 m 'HVD33(2) PREVIEW
10 Mbps 200 m 'HVD33(2) PREVIEW
250 m 'HVD33(2) PREVIEW
300 m 'HVD33(2) PREVIEW
5 Mbps 500 m 'HVD34(2) PREVIEW
3 Mbps 500 m 'HVD33(2) PREVIEW
'HVD34(2) PREVIEW
1 Mbps 1000 m 'HVD34(2) PREVIEW
(1) All typical values are at VCC = 5 V and temperature = 25°C.
(2) The SN65HVD33-EP and the SN65HVD34-EP do not have receiver equalization, but are specified for comparison.

6.10 Dissipation Ratings

PARAMETER DEVICE TEST CONDITIONS MIN MAX UNIT
PD 'HVD30 (25 Mbps) RL = 60 Ω, CL = 50 pF,
Input to D a 50% duty cycle square wave at indicated signaling rate, TA = 85°C
197 mW
'HVD31 (5 Mbps) 213
'HVD32 (1 Mbps) 193
'HVD33 (25 Mbps) RL = 60 Ω, CL = 50 pF, DE at VCC, RE at 0 V,
Input to D a 50% duty cycle square wave at indicated signaling rate, TA = 85°C
197 mW
'HVD34 (5 Mbps) 193
'HVD35 (1 Mbps) 248

6.11 Typical Characteristics

SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP isup_sigr_3_lls665.gif
Figure 1. 'HVD30, 'HVD33 RMS Supply Current Signaling Rate
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP isup_sigr_5_lls665.gif
Figure 3. 'HVD32, 'HVD35 RMS Supply Current Signaling Rate
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP ibusin_vi_4_lls665.gif
Figure 5. 'HVD31, 'HVD32, 'HVD34, 'HVD35 Bus Input Current vs Input Voltage
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP drihi_vo_4_lls665.gif
Figure 7. Driver High-Level Output Current vs High-Level Output Voltage
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP io_vcc_4_lls665.gif
Figure 9. Driver Output Current vs Supply Voltage
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP isup_sigr_4_lls665.gif
Figure 2. 'HVD31, 'HVD34 RMS Supply Current Signaling Rate
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP ibusin_vi_3_lls665.gif
Figure 4. Bus Input Current vs Input Voltage
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP drlio_vo_4_lls665.gif
Figure 6. Driver Low-Level Output Current vs Low-Level Output Voltage
SN65HVD30-EP SN65HVD31-EP SN65HVD32-EP SN65HVD33-EP SN65HVD34-EP SN65HVD35-EP drdfv_tmp_4_lls665.gif
Figure 8. Driver Differential Output Voltage vs Free-Air Temperature