SLLSFI7 October   2020 SN65HVD64

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Coaxial Interface
      2. 8.3.2 Reference Input
      3. 8.3.3 RS-485 Direction Control
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Driver Amplitude Adjust
      2. 9.1.2 Direction Control
      3. 9.1.3 Direction Control Time Constant
      4. 9.1.4 Conversion Between dBm and Peak-to-Peak Voltage
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The SN65HVD64 device has two power supply pins: VCC, which provides power to the analog circuitry, and VL, which is a logic supply. VCC should be operated from 3 V to 5.5 V, while VL can range from 1.6 V to 5.5 V to interface to different logic levels. Power supply decoupling capacitances of at least 0.1 µF should be placed as close as possible to each power supply pin.