SLLS373M July   1999  – March 2024 SN65LVDS1 , SN65LVDS2 , SN65LVDT2

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Driver Electrical Characteristics
    6. 6.6 Receiver Electrical Characteristics
    7. 6.7 Driver Switching Characteristics
    8. 6.8 Receiver Switching Characteristics
    9. 6.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 SN65LVDS1 Features
        1. 8.3.1.1 Driver Output Voltage and Power-On Reset
        2. 8.3.1.2 Driver Offset
        3. 8.3.1.3 5-V Input Tolerance
        4. 8.3.1.4 NC Pins
        5. 8.3.1.5 Driver Equivalent Schematics
      2. 8.3.2 SN65LVDS2 and SN65LVDT2 Features
        1. 8.3.2.1 Receiver Open Circuit Fail-Safe
        2. 8.3.2.2 Receiver Output Voltage and Power-On Reset
        3. 8.3.2.3 Common-Mode Range vs Supply Voltage
        4. 8.3.2.4 General Purpose Comparator
        5. 8.3.2.5 Receiver Equivalent Schematics
        6. 8.3.2.6 NC Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation With VCC < 1.5 V
      2. 8.4.2 Operation With 1.5 V ≤ VCC < 2.4 V
      3. 8.4.3 Operation With 2.4 V ≤ VCC < 3.6 V
      4. 8.4.4 SN65LVDS1 Truth Table
      5. 8.4.5 SN65LVDS2 and SN65LVDT2 Truth Table
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Point-to-Point Communications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Driver Supply Voltage
          2. 9.2.1.2.2  Driver Bypass Capacitance
          3. 9.2.1.2.3  Driver Input Voltage
          4. 9.2.1.2.4  Driver Output Voltage
          5. 9.2.1.2.5  Interconnecting Media
          6. 9.2.1.2.6  PCB Transmission Lines
          7. 9.2.1.2.7  Termination Resistor
          8. 9.2.1.2.8  Driver NC Pins
          9. 9.2.1.2.9  Receiver Supply Voltage
          10. 9.2.1.2.10 Receiver Bypass Capacitance
          11. 9.2.1.2.11 Receiver Input Common-Mode Range
          12. 9.2.1.2.12 Receiver Input Signal
          13. 9.2.1.2.13 Receiver Output Signal
          14. 9.2.1.2.14 Receiver NC Pins
      2. 9.2.2 Application Curve
      3. 9.2.3 Multidrop Communications
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
          1. 9.2.3.2.1 Interconnecting Media
        3. 9.2.3.3 Application Curve
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Microstrip vs. Stripline Topologies
      2. 11.1.2 Dielectric Type and Board Construction
      3. 11.1.3 Recommended Stack Layout
      4. 11.1.4 Separation Between Traces
      5. 11.1.5 Crosstalk and Ground Bounce Minimization
      6. 11.1.6 Decoupling
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Other LVDS Products
    2. 12.2 Third-Party Products Disclaimer
    3. 12.3 Documentation Support
      1. 12.3.1 Related Information
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Support Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  14. 13Revision History
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The SN65LVDS1, SN65LVDS2, and SN65LVDT2 devices are single, low-voltage, differential line drivers and receivers in the small-outline transistor package. The outputs comply with the TIA/EIA-644 standard and provide a minimum differential output voltage magnitude of 247mV into a 100Ω load at signaling rates up to 630Mbps for drivers and 400Mbps for receivers.

When the SN65LVDS1 device is used with an LVDS receiver (such as the SN65LVDT2) in a point-to-point connection, data or clocking signals can be transmitted over printed-circuit board traces or cables at very high rates with very low electromagnetic emissions and power consumption. The packaging, low power, low EMI, high ESD tolerance, and wide supply voltage range make the device ideal for battery-powered applications.

The SN65LVDS1, SN65LVDS2, and SN65LVDT2 devices are characterized for operation from –40°C to 85°C.

Device Information
PART NUMBER PACKAGE(1) BODY SIZE (NOM)
SN65LVDS1 SOIC (8) 4.90 mm × 3.91 mm
SOT (5) 2.90 mm × 1.60 mm
SN65LVDS2 SOIC (8) 4.90 mm × 3.91 mm
SOT (5) 2.90 mm × 1.60 mm
SN65LVDT2 SOIC (8) 4.90 mm × 3.91 mm
SOT (5) 2.90 mm × 1.60 mm
For all available packages, see the orderable addendum at the end of the data sheet.
SN65LVDS1 SN65LVDS2 SN65LVDT2 Simplified Schematic Simplified Schematic