SLLSEM1B February   2015  – April 2015 SN65LVDS93A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 TTL Input Data
      2. 8.3.2 LVDS Output Data
    4. 8.4 Device Functional Modes
      1. 8.4.1 Input Clock Edge
      2. 8.4.2 Low Power Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Power Up Sequence
        2. 9.2.2.2 Signal Connectivity
        3. 9.2.2.3 PCB Routing
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Board Stackup
      2. 11.1.2 Power and Ground Planes
      3. 11.1.3 Traces, Vias, and Other PCB Components
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Trademarks
    2. 12.2 Electrostatic Discharge Caution
    3. 12.3 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC(2) –0.5 4 V
Voltage range at any output terminal –0.5 VCC + 0.5 V
Voltage range at any input terminal –0.5 IOVCC + 0.5 V
Continuous power dissipation See Thermal Information
Storage temperature, Tstg –65 150 °C
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those specified is not implied.
(2) All voltages are with respect to the GND terminals.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q200-002(1) ±4000 V
Charged-device model (CDM), per AEC Q100-011 ±1500
(1) AEC Q200-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN NOM MAX UNIT
Supply voltage, VCC 3 3.3 3.6 V
LVDS output Supply voltage, LVDSVCC 3 3.3 3.6
PLL analog supply voltage, PLLVCC 3 3.3 3.6
IO input reference supply voltage, IOVCC 1.62 1.8 / 2.5 / 3.3 3.6
Power supply noise on any VCC terminal 0.1
High-level input voltage, VIH IOVCC = 1.8 V IOVCC/2 + 0.3 V V
IOVCC = 2.5 V IOVCC/2 + 0.4 V
IOVCC = 3.3 V IOVCC/2 + 0.5 V
Low-level input voltage, VIL IOVCC = 1.8 V IOVCC/2 - 0.3 V V
IOVCC = 2.5 V IOVCC/2 - 0.4 V
IOVCC = 3.3 V IOVCC/2 - 0.5 V
Differential load impedance, ZL 90 132 Ω
Operating free-air temperature, TA –40 85 °C
Virtual junction temperature, TJ 105 °C

6.4 Thermal Information

THERMAL METRIC(1) DGG UNIT
56 PINS
RθJA Junction-to-ambient thermal resistance 63.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 15.9
RθJB Junction-to-board thermal resistance 32.5
ψJT Junction-to-top characterization parameter 0.4
ψJB Junction-to-board characterization parameter 32.2
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VT Input voltage threshold RL = 100Ω, See Figure 7 IOVCC/2 V
|VOD| Differential steady-state output voltage magnitude 250 450 mV
Δ|VOD| Change in the steady-state differential output voltage magnitude between opposite binary states 1 35 mV
VOC(SS) Steady-state common-mode output voltage See Figure 7
tR/F (Dx, CLKin) = 1ns
1.125 1.375 V
VOC(PP) Peak-to-peak common-mode output voltage 35 mV
IIH High-level input current VIH = IOVCC 25 μA
IIL Low-level input current VIL = 0 V ±10 μA
IOS Short-circuit output current VOY = 0 V ±24 mA
VOD = 0 V ±12 mA
IOZ High-impedance state output current VO = 0 V to VCC ±20 μA
Rpdn Input pull-down integrated resistor on all inputs (Dx, CLKSEL, SHTDN, CLKIN) IOVCC = 1.8 V 200
IOVCC = 3.3 V 100
IQ Quiescent current (average) disabled, all inputs at GND;
SHTDN = VIL
2 100 μA
ICC Supply current (average) SHTDN = VIH, RL = 100Ω (5 places), grayscale pattern (Figure 8)
VCC = 3.3 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 51.9 mA
I(IOVCC) with IOVCC = 3.3 V 0.4
I(IOVCC) with IOVCC = 1.8 V 0.1
SHTDN = VIH, RL = 100Ω (5 places), 50% transition density pattern (Figure 8),
VCC = 3.3 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 53.3 mA
I(IOVCC) with IOVCC = 3.3 V 0.6
I(IOVCC) with IOVCC = 1.8 V 0.2
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
VCC = 3.6 V, fCLK = 75 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 63.7 mA
I(IOVCC) with IOVCC = 3.3 V 1.3
I(IOVCC) with IOVCC = 1.8 V 0.5
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
fCLK = 100 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 81.6 mA
I(IOVCC) with IOVCC = 3.6 V 1.6
I(IOVCC) with IOVCC = 1.8 V 0.6
SHTDN = VIH, RL = 100Ω (5 places), worst-case pattern (Figure 9),
fCLK = 135 MHz
I(VCC) + I(PLLVCC) + I(LVDSVCC) 102.2 mA
I(IOVCC) with IOVCC = 3.6 V 2.1
I(IOVCC) with IOVCC = 1.8 V 0.8
CI Input capacitance 2 pF
(1) All typical values are at VCC = 3.3 V, TA = 25°C.

6.6 Timing Requirements

PARAMETER MIN MAX UNIT
Input clock period, tc 7.4 100 ns
Input clock modulation with modulation frequency 30 kHz 8%
with modulation frequency 50 kHz 6%
High-level input clock pulse width duration, tw 0.4 tc 0.6 tc ns
Input signal transition time, tt 3 ns
Data set up time, D0 through D27 before CLKIN (See Figure 6) 2 ns
Data hold time, D0 through D27 after CLKIN 0.8 ns
SN65LVDS93A-Q1 load_seq_lls846.gifFigure 1. Typical SN65LVDS93A-Q1 Load and Shift Sequences
SN65LVDS93A-Q1 sch_diag_lls846.gifFigure 2. Equivalent Input and Output Schematic Diagrams

6.7 Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
t0 Delay time, CLKOUT↑ after Yn valid (serial bit position 0, equal D1, D9, D20, D5) See Figure 10, tC = 10ns,
|Input clock jitter| < 25ps (2)
-0.1 0 0.1 ns
t1 Delay time, CLKOUT↑ after Yn valid (serial bit position 1, equal D0, D8, D19, D27) 1/7 tc - 0.1 1/7 tc + 0.1 ns
t2 Delay time, CLKOUT↑ after Yn valid (serial bit position 2, equal D7, D18, D26. D23) 2/7 tc - 0.1 2/7 tc + 0.1 ns
t3 Delay time, CLKOUT↑ after Yn valid (serial bit position 3; equal D6, D15, D25, D17) 3/7 tc - 0.1 3/7 tc + 0.1 ns
t4 Delay time, CLKOUT↑ after Yn valid (serial bit position 4, equal D4, D14, D24, D16) 4/7 tc - 0.1 4/7 tc + 0.1 ns
t5 Delay time, CLKOUT↑ after Yn valid (serial bit position 5, equal D3, D13, D22, D11) 5/7 tc - 0.1 5/7 tc + 0.1 ns
t6 Delay time, CLKOUT↑ after Yn valid (serial bit position 6, equal D2, D12, D21, D10) 6/7 tc - 0.1 6/7 tc + 0.1 ns
tc(o) Output clock period tc ns
Δtc(o) Output clock cycle-to-cycle jitter (3) tC = 10ns; clean reference clock, see Figure 11 ±26 ps
tC = 10ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±44
tC = 7.4ns; clean reference clock, see Figure 11 ±35
tC = 7.4ns with 0.05UI added noise modulated at 3MHz, see Figure 11 ±42
tw High-level output clock pulse duration 4/7 tc ns
tr/f Differential output voltage transition time (tr or tf) See Figure 7 225 500 ps
ten Enable time, SHTDN↑ to phase lock (Yn valid) f(clk) = 135 MHz, See Figure 12 6 µs
tdis Disable time, SHTDN↓ to off-state (CLKOUT high-impedance) f(clk) = 135 MHz, See Figure 13 7 ns
(1) All typical values are at VCC = 3.3 V, TA = 25°C.
(2) |Input clock jitter| is the magnitude of the change in the input clock period.
(3) The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.

6.8 Typical Characteristics

SN65LVDS93A-Q1 gscale_v_clk_llsem1.gif
Total Device Current (Using Grayscale pattern) Over Pixel Clock Frequency
Figure 3. Average Grayscale ICC vs Clock Frequency
SN65LVDS93A-Q1 typ_prbs_llsem1.gif
Clock Signal = 135 MHz
Figure 5. Typical PRBS Output Signal Over One Clock Period
SN65LVDS93A-Q1 outjit_v_freq_llsem1.gif
CLK Frequency During Test = 100 MHz
Figure 4. Output Clock Jitter vs Input Clock Jitter