SLLSEX9A December   2016  – February 2020 SN65MLVD206B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic, SN65MLVD206B
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. Table 1.  Absolute Maximum Ratings
    2. Table 2.  ESD Ratings
    3. Table 3.  Recommended Operating Conditions
    4. Table 4.  Thermal Information
    5. Table 5.  Electrical Characteristics
    6. Table 6.  Electrical Characteristics – Driver
    7. Table 7.  Electrical Characteristics – Receiver
    8. Table 8.  Electrical Characteristics – BUS Input and Output
    9. Table 9.  Switching Characteristics – Driver
    10. Table 10. Switching Characteristics – Receiver
    11. 6.1       Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Power-On-Reset
      2. 8.3.2 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation with VCC < 1.5 V
      2. 8.4.2 Operations with 1.5 V ≤ VCC < 3 V
      3. 8.4.3 Operation with 3 V ≤ VCC < 3.6 V
      4. 8.4.4 Device Function Tables
      5. 8.4.5 Equivalent Input and Output Schematic Diagrams
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Multipoint Communications
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1  Supply Voltage
        2. 9.2.3.2  Supply Bypass Capacitance
        3. 9.2.3.3  Driver Input Voltage
        4. 9.2.3.4  Driver Output Voltage
        5. 9.2.3.5  Termination Resistors
        6. 9.2.3.6  Receiver Input Signal
        7. 9.2.3.7  Receiver Input Threshold (Failsafe)
        8. 9.2.3.8  Receiver Output Signal
        9. 9.2.3.9  Interconnecting Media
        10. 9.2.3.10 PCB Transmission Lines
      4. 9.2.4 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Microstrip vs. Stripline Topologies
      2. 11.1.2 Dielectric Type and Board Construction
      3. 11.1.3 Recommended Stack Layout
      4. 11.1.4 Separation Between Traces
      5. 11.1.5 Crosstalk and Ground Bounce Minimization
      6. 11.1.6 Decoupling
        1.       (a)
        2.       (b)
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

ESD Protection

The bus terminals of the SN65MLVD206B possess on-chip ESD protection against ±8-kV human body model (HBM) and ±8-kV IEC61000-4-2 contact discharge. The IEC-ESD test is far more severe than the HBM-ESD test. The 50% higher charge capacitance, CS, and 78% lower discharge resistance, RD of the IEC model produce significantly higher discharge currents than the HBM-model.

As stated in the IEC 61000-4-2 standard, contact discharge is the preferred test method; although IEC air-gap testing is less repeatable than contact testing, air discharge protection levels are inferred from the contact discharge test results.

SN65MLVD206B hbm_app_sllsen0.gifFigure 15. HBM and IEC-ESD Models and Currents in Comparison (HBM Values in Parenthesis)