SLLSEX9A December   2016  – February 2020 SN65MLVD206B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic, SN65MLVD206B
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. Table 1.  Absolute Maximum Ratings
    2. Table 2.  ESD Ratings
    3. Table 3.  Recommended Operating Conditions
    4. Table 4.  Thermal Information
    5. Table 5.  Electrical Characteristics
    6. Table 6.  Electrical Characteristics – Driver
    7. Table 7.  Electrical Characteristics – Receiver
    8. Table 8.  Electrical Characteristics – BUS Input and Output
    9. Table 9.  Switching Characteristics – Driver
    10. Table 10. Switching Characteristics – Receiver
    11. 6.1       Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Power-On-Reset
      2. 8.3.2 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation with VCC < 1.5 V
      2. 8.4.2 Operations with 1.5 V ≤ VCC < 3 V
      3. 8.4.3 Operation with 3 V ≤ VCC < 3.6 V
      4. 8.4.4 Device Function Tables
      5. 8.4.5 Equivalent Input and Output Schematic Diagrams
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Multipoint Communications
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1  Supply Voltage
        2. 9.2.3.2  Supply Bypass Capacitance
        3. 9.2.3.3  Driver Input Voltage
        4. 9.2.3.4  Driver Output Voltage
        5. 9.2.3.5  Termination Resistors
        6. 9.2.3.6  Receiver Input Signal
        7. 9.2.3.7  Receiver Input Threshold (Failsafe)
        8. 9.2.3.8  Receiver Output Signal
        9. 9.2.3.9  Interconnecting Media
        10. 9.2.3.10 PCB Transmission Lines
      4. 9.2.4 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Microstrip vs. Stripline Topologies
      2. 11.1.2 Dielectric Type and Board Construction
      3. 11.1.3 Recommended Stack Layout
      4. 11.1.4 Separation Between Traces
      5. 11.1.5 Crosstalk and Ground Bounce Minimization
      6. 11.1.6 Decoupling
        1.       (a)
        2.       (b)
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Table 10. Switching Characteristics – Receiver

over recommended operating conditions unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
tPLH Propagation delay time, low-to-high-level output CL = 15 pF, See Figure 11 2 6 10 ns
tPHL Propagation delay time, high-to-low-level output 2 6 10 ns
tr Output signal rise time 2.3 ns
tf Output signal fall time 2.3 ns
tsk(p) Pulse skew (|tpHL – tpLH|) Type 2 CL = 15 pF, See Figure 11 400 750 ps
tsk(pp) Part-to-part skew(2) CL = 15 pF, See Figure 11 1 ns
tjit(per) Period jitter, rms (1 standard deviation)(3) 100-MHz clock input(4) 1 ps
tjit(pp) Peak-to-peak jitter(3)(6) Type 2 200 Mbps 215 –1 PRBS input(5) 35 650 ps
tPHZ Disable time, high-level-to-high-impedance output See Figure 12 6 10 ns
tPLZ Disable time, low-level-to-high-impedance output 6 10 ns
tPZH Enable time, high-impedance-to-high-level output 10 15 ns
tPZL Enable time, high-impedance-to-low-level output 10 15 ns
All typical values are at 25°C and with a 3.3-V supply voltage.
Part-to-part skew is defined as the difference in propagation delays between two devices that operate at the same V/T conditions.
Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.
VID = 400 mVpp, Vcm = 1 V, tr = tf = 0.5 ns (10% to 90%), measured over 30K samples.
VID = 400 mVpp, Vcm = 1 V, tr = tf = 0.5 ns (10% to 90%), measured over 100K samples.
Peak-to-peak jitter includes jitter due to pulse skew (tsk(p))