SCLS527E July   2003  – June 2024 SN74AHC245-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Switching Characteristics, VCC = 3.3 V ± 0.3 V
    7. 5.7  Switching Characteristics, VCC = 5 V ± 0.5 V
    8. 5.8  Noise Characteristics
    9. 5.9  Operating Characteristics
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Standard CMOS Inputs
      2. 7.3.2 Balanced CMOS 3-State Outputs
      3. 7.3.3 Wettable Flanks
      4. 7.3.4 Clamp Diode Structure
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Power Considerations
        2. 8.2.1.2 Input Considerations
        3. 8.2.1.3 Output Considerations
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The SN74AHC245-Q1 octal bus transceiver is designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements. This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses effectively are isolated.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2) BODY SIZE(3)
SN74AHC245-Q1 PW (TSSOP, 20) 6.50mm × 6.4mm 6.50mm × 4.40mm
RKS (VQFN, 20) 4.50mm × 2.50mm 4.50mm × 2.50mm
The package size (length × width) is a nominal value and includes pins, where applicable.
The body size (length × width) is a nominal value and does not include pins.
SN74AHC245-Q1 Simplified Schematic Simplified Schematic