Refer to the PDF data sheet for device specific package drawings
This 2-bit non-inverting bus transceiver uses two separate configurable power-supply rails. The A ports are designed to track VCCA and accepts any supply voltage from 1.2 V to 3.6 V. The B ports are designed to track VCCB and accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation and level-shifting between any of the 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes.
The SN74AVCH2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR pin) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated. The SN74AVCH2T45 features active bus-hold circuitry, which holds unused or un-driven inputs at a valid logic state. TI does not recommend using pull-up or pull-down resistors with the bus-hold circuitry.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
SN74AVCH2T45 | SSOP (8) | 2.95 mm × 2.80 mm |
VSSOP (8) | 2.30 mm × 2.00 mm | |
DSBGA (8) | 1.89 mm × 0.89 mm |
Changes from G Revision (April 2015) to H Revision
Changes from F Revision (November 2007) to G Revision
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The VCC isolation feature ensures that if either VCC input is at GND, then both outputs are in the high-impedance state. The bus-hold circuitry on the powered-up side always stays active.
Active bus-hold circuitry holds unused or un-driven inputs at a valid logic state. NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.
PIN | DESCRIPTION | ||
---|---|---|---|
NAME | SSOP, VSSOP |
DSBGA | |
VCCA | 1 | A1 | Supply Voltage A |
VCCB | 8 | A2 | Supply Voltage B |
GND | 4 | D1 | Ground |
A1 | 2 | B1 | Output or input depending on state of DIR. Output level depends on VCCA. |
A2 | 3 | C1 | Output or input depending on state of DIR. Output level depends on VCCA. |
B1 | 7 | B2 | Output or input depending on state of DIR. Output level depends on VCCB. |
B2 | 6 | C2 | Output or input depending on state of DIR. Output level depends on VCCB. |
DIR | 5 | D2 | Direction Pin, Connect to GND or to VCCA. |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCCA
VCCB |
Supply voltage | –0.5 | 4.6 | V | |
VI | Input voltage(2) | I/O ports (A port) | –0.5 | 4.6 | V |
I/O ports (B port) | –0.5 | 4.6 | |||
Control inputs | –0.5 | 4.6 | |||
VO | Voltage range applied to any output in the high-impedance or power-off state(2) |
A port | –0.5 | 4.6 | V |
B port | –0.5 | 4.6 | |||
VO | Voltage range applied to any output in the high or low state(2)(3) | A port | –0.5 | VCCA + 0.5 | V |
B port | –0.5 | VCCB + 0.5 | |||
IIK | Input clamp current | VI < 0 | –50 | mA | |
IOK | Output clamp current | VO < 0 | –50 | mA | |
IO | Continuous output current | ±50 | mA | ||
Continuous current through VCCA, VCCB, or GND | ±100 | mA | |||
TJ | Junction temperature | –40 | 150 | °C | |
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±8000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
Machine Model (MM), Per JEDEC specification JESD22-A115-A | ±200 |
VCCI(1) | VCCO(2) | MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|---|---|
VCCA | Supply voltage | 1.2 | 3.6 | V | ||||
VCCB | Supply voltage | 1.2 | 3.6 | V | ||||
VIH | High-level input voltage |
Data inputs(4) | 1.2 V to 1.95 V | VCCI(1) × 0.65 | V | |||
1.95 V to 2.7 V | 1.6 | |||||||
2.7 V to 3.6 V | 2 | |||||||
VIL | Low-level input voltage |
Data inputs(4) | 1.2 V to 1.95 V | VCCI(1) × 0.35 | V | |||
1.95 V to 2.7 V | 0.7 | |||||||
2.7 V to 3.6 V | 0.8 | |||||||
VIH | High-level input voltage |
DIR (referenced to VCCA)(5) |
1.2 V to 1.95 V | VCCA × 0.65 | V | |||
1.95 V to 2.7 V | 1.6 | |||||||
2.7 V to 3.6 V | 2 | |||||||
VIL | Low-level input voltage |
DIR (referenced to VCCA)(5) |
1.2 V to 1.95 V | VCCA × 0.35 | V | |||
1.95 V to 2.7 V | 0.7 | |||||||
2.7 V to 3.6 V | 0.8 | |||||||
VI | Input voltage | 0 | 3.6 | V | ||||
VO | Output voltage | Active state | 0 | VCCO(2) | V | |||
3-state | 0 | 3.6 | ||||||
IOH | High-level output current | 1.2 V | –3 | mA | ||||
1.4 V to 1.6 V | –6 | |||||||
1.65 V to 1.95 V | –8 | |||||||
2.3 V to 2.7 V | –9 | |||||||
3 V to 3.6 V | –12 | |||||||
IOL | Low-level output current | 1.2 V | 3 | mA | ||||
1.4 V to 1.6 V | 6 | |||||||
1.65 V to 1.95 V | 8 | |||||||
2.3 V to 2.7 V | 9 | |||||||
3 V to 3.6 V | 12 | |||||||
Δt/Δv | Input transition rise or fall rate | 5 | ns/V | |||||
TA | Operating free-air temperature | –40 | 85 | °C |
THERMAL METRIC(1) | SN74AVCH2T45 | UNIT | |||
---|---|---|---|---|---|
DCT (SSOP) | DCU (VSSOP) | YZP (DSBGA) | |||
8 PINS | 8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 194.4 | 199.3 | 105.8 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 124.7 | 76.2 | 1.6 | |
RθJB | Junction-to-board thermal resistance | 106.8 | 80.6 | 10.8 | |
ψJT | Junction-to-top characterization parameter | 49.8 | 7.1 | 3.1 | |
ψJB | Junction-to-board characterization parameter | 105.8 | 80.1 | 10.8 |
PARAMETER | TEST CONDITIONS | VCCA | VCCB | TA = 25°C | –40°C to 85°C | UNIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | TYP | MAX | MIN | TYP | MAX | |||||||
VOH(7) | IOH = –100 μA | VI = VIH | 1.2 V to 3.6 V | 1.2 V to 3.6 V | VCCO – 0.2 | V | ||||||
IOH = –3 mA | 1.2 V | 1.2 V | 0.95 | |||||||||
IOH = –6 mA | 1.4 V | 1.4 V | 1.05 | |||||||||
IOH = –8 mA | 1.65 V | 1.65 V | 1.2 | |||||||||
IOH = –9 mA | 2.3 V | 2.3 V | 1.75 | |||||||||
IOH = –12 mA | 3 V | 3 V | 2.3 | |||||||||
VOL(7) | IOL = 100 μA | VI = VIL | 1.2 V to 3.6 V | 1.2 V to 3.6 V | 0.2 | V | ||||||
IOL = 3 mA | 1.2 V | 1.2 V | 0.15 | |||||||||
IOL = 6 mA | 1.4 V | 1.4 V | 0.35 | |||||||||
IOL = 8 mA | 1.65 V | 1.65 V | 0.45 | |||||||||
IOL = 9 mA | 2.3 V | 2.3 V | 0.55 | |||||||||
IOL = 12 mA | 3 V | 3 V | 0.7 | |||||||||
II(7) | DIR input | VI = VCCA or GND | 1.2 V to 3.6 V | 1.2 V to 3.6 V | ±0.025 | ±0.25 | ±1 | μA | ||||
IBHL(1) | VI = 0.42 V | 1.2 V | 1.2 V | 25 | μA | |||||||
VI = 0.49 V | 1.4 V | 1.4 V | 15 | |||||||||
VI = 0.58 V | 1.65 V | 1.65 V | 25 | |||||||||
VI = 0.7 V | 2.3 V | 2.3 V | 45 | |||||||||
VI = 0.8 V | 3.3 V | 3.3 V | 100 | |||||||||
IBHH(2) | VI = 0.78 V | 1.2 V | 1.2 V | –25 | μA | |||||||
VI = 0.91 V | 1.4 V | 1.4 V | –15 | |||||||||
VI = 1.07 V | 1.65 V | 1.65 V | –25 | |||||||||
VI = 1.6 V | 2.3 V | 2.3 V | –45 | |||||||||
VI = 2 V | 3.3 V | 3.3 V | –100 | |||||||||
IBHLO(3) | VI = 0 to VCC | 1.2 V | 1.2 V | 50 | μA | |||||||
1.6 V | 1.6 V | 125 | ||||||||||
1.95 V | 1.95 V | 200 | ||||||||||
2.7 V | 2.7 V | 300 | ||||||||||
3.6 V | 3.6 V | 500 | ||||||||||
IBHHO(4) | VI = 0 to VCC | 1.2 V | 1.2 V | –50 | μA | |||||||
1.6 V | 1.6 V | –125 | ||||||||||
1.95 V | 1.95 V | –200 | ||||||||||
2.7 V | 2.7 V | –300 | ||||||||||
3.6 V | 3.6 V | –500 | ||||||||||
Ioff(8) | A port | VI or VO = 0 to 3.6 V | 0 V | 0 V to 3.6 V | ±0.1 | ±1 | ±5 | μA | ||||
B port | 0 V to 3.6 V | 0 V | ±0.1 | ±1 | ±5 | |||||||
IOZ(8) | B port | VO = VCCO or GND, VI = VCCI or GND |
0 V | 3.6 V | ±0.5 | ±2.5 | ±5 | |||||
A port | 3.6 V | 0 V | ±0.5 | ±2.5 | ±5 | μA | ||||||
ICCA(8) | VI = VCCI or GND, IO = 0 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | 10 | μA | |||||||
0 V | 3.6 V | –2 | ||||||||||
3.6 V | 0 V | 10 | ||||||||||
ICCB(8) | VI = VCCI or GND, IO = 0 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | 10 | μA | |||||||
0 V | 3.6 V | 10 | ||||||||||
3.6 V | 0 V | –2 | ||||||||||
ICCA + ICCB | VI = VCCI or GND, IO = 0 | 1.2 V to 3.6 V | 1.2 V to 3.6 V | 20 | μA | |||||||
Ci | Control inputs |
VI = 3.3 V or GND | 3.3 V | 3.3 V | 2.5 | pF | ||||||
Cio | A or B port | VI = 3.3 V or GND | 3.3 V | 3.3 V | 6 | pF |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
VCCB = 1.2 V | VCCB = 1.5 V | VCCB = 1.8 V | VCCB = 2.5 V | VCCB = 3.3 V | UNIT |
---|---|---|---|---|---|---|---|---|
TYP | TYP | TYP | TYP | TYP | ||||
tPLH(2) | A | B | 3.1 | 2.6 | 2.4 | 2.2 | 2.2 | ns |
tPHL(2) | 3.1 | 2.6 | 2.4 | 2.2 | 2.2 | |||
tPLH(2) | B | A | 3.4 | 3.1 | 3 | 2.9 | 2.9 | ns |
tPHL(2) | 3.4 | 3.1 | 3 | 2.9 | 2.9 | |||
tPHZ(2) | DIR | A | 5.2 | 5.2 | 5.1 | 5 | 4.8 | ns |
tPLZ(2) | 5.2 | 5.2 | 5.1 | 5 | 4.8 | |||
tPHZ(2) | DIR | B | 5 | 4 | 3.8 | 2.8 | 3.2 | ns |
tPLZ(2) | 5 | 4 | 3.8 | 2.8 | 3.2 | |||
tPZH(2)(1) | DIR | A | 8.4 | 7.1 | 6.8 | 5.7 | 6.1 | ns |
tPZL(2)(1) | 8.4 | 7.1 | 6.8 | 5.7 | 6.1 | |||
tPZH(2)(1) | DIR | B | 8.3 | 7.8 | 7.5 | 7.2 | 7 | ns |
tPZL(2)(1) | 8.3 | 7.8 | 7.5 | 7.2 | 7 |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
VCCB = 1.2 V | VCCB = 1.5 V ± 0.1 V |
VCCB = 1.8 V ± 0.15 V |
VCCB = 2.5 V ± 0.2 V |
VCCB = 3.3 V ± 0.3 V |
UNIT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
tPLH(2) | A | B | 2.8 | 0.7 | 5.4 | 0.5 | 4.6 | 0.4 | 3.7 | 0.3 | 3.5 | ns |
tPHL(2) | 2.8 | 0.7 | 5.4 | 0.5 | 4.6 | 0.4 | 3.7 | 0.3 | 3.5 | |||
tPLH(2) | B | A | 2.7 | 0.8 | 5.4 | 0.7 | 5.2 | 0.6 | 4.9 | 0.5 | 4.7 | ns |
tPHL(2) | 2.7 | 0.8 | 5.4 | 0.7 | 5.2 | 0.6 | 4.9 | 0.5 | 4.7 | |||
tPHZ(2) | DIR | A | 3.9 | 1.3 | 8.5 | 1.3 | 7.8 | 1.1 | 7.7 | 1.4 | 7.6 | ns |
tPLZ(2) | 3.9 | 1.3 | 8.5 | 1.3 | 7.8 | 1.1 | 7.7 | 1.4 | 7.6 | |||
tPHZ(2) | DIR | B | 4.7 | 1.1 | 7 | 1.4 | 6.9 | 1.2 | 6.9 | 1.7 | 7.1 | ns |
tPLZ(2) | 4.7 | 1.1 | 7 | 1.4 | 6.9 | 1.2 | 6.9 | 1.7 | 7.1 | |||
tPZH(2)(1) | DIR | A | 7.4 | 12.4 | 12.1 | 11.8 | 11.8 | ns | ||||
tPZL(2)(1) | 7.4 | 12.4 | 12.1 | 11.8 | 11.8 | |||||||
tPZH(2)(1) | DIR | B | 6.7 | 13.9 | 12.4 | 11.4 | 11.1 | ns | ||||
tPZL(2)(1) | 6.7 | 13.9 | 12.4 | 11.4 | 11.1 |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
VCCB = 1.2 V | VCCB = 1.5 V ± 0.1 V |
VCCB = 1.8 V ± 0.15 V |
VCCB = 2.5 V ± 0.2 V |
VCCB = 3.3 V ± 0.3 V |
UNIT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
tPLH(2) | A | B | 2.7 | 0.5 | 5.2 | 0.4 | 4.3 | 0.2 | 3.4 | 0.2 | 3.1 | ns |
tPHL(2) | 2.7 | 0.5 | 5.2 | 0.4 | 4.3 | 0.2 | 3.4 | 0.2 | 3.1 | |||
tPLH(2) | B | A | 2.4 | 0.7 | 4.7 | 0.5 | 4.4 | 0.5 | 4 | 0.4 | 3.8 | ns |
tPHL(2) | 2.4 | 0.7 | 4.7 | 0.5 | 4.4 | 0.5 | 4 | 0.4 | 3.8 | |||
tPHZ(2) | DIR | A | 3.7 | 1.3 | 8.1 | 0.7 | 6.9 | 1.4 | 5.3 | 1.1 | 5.2 | ns |
tPLZ(2) | 3.7 | 1.3 | 8.1 | 0.7 | 6.9 | 1.4 | 5.3 | 1.1 | 5.2 | |||
tPHZ(2) | DIR | B | 4.4 | 1.3 | 5.8 | 1.3 | 5.9 | 0.8 | 5.7 | 1.5 | 5.9 | ns |
tPLZ(2) | 4.4 | 1.3 | 5.8 | 1.3 | 5.9 | 0.8 | 5.7 | 1.5 | 5.9 | |||
tPZH(2)(1) | DIR | A | 6.8 | 10.5 | 10.3 | 9.7 | 9.7 | ns | ||||
tPZL(2)(1) | 6.8 | 10.5 | 10.3 | 9.7 | 9.7 | |||||||
tPZH(2)(1) | DIR | B | 6.4 | 13.3 | 11.2 | 8.7 | 8.3 | ns | ||||
tPZL(2)(1) | 6.4 | 13.3 | 11.2 | 8.7 | 8.3 |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
VCCB = 1.2 V | VCCB = 1.5 V ± 0.1 V |
VCCB = 1.8 V ± 0.15 V |
VCCB = 2.5 V ± 0.2 V |
VCCB = 3.3 V ± 0.3 V |
UNIT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
tPLH(2) | A | B | 2.6 | 0.4 | 4.9 | 0.2 | 4 | 0.2 | 3 | 0.2 | 2.6 | ns |
tPHL(2) | 2.6 | 0.4 | 4.9 | 0.2 | 4 | 0.2 | 3 | 0.2 | 2.6 | |||
tPLH(2) | B | A | 2.1 | 0.6 | 3.8 | 0.5 | 3.4 | 0.4 | 3 | 0.3 | 2.8 | ns |
tPHL(2) | 2.1 | 0.6 | 3.8 | 0.5 | 3.4 | 0.4 | 3 | 0.3 | 2.8 | |||
tPHZ(2) | DIR | A | 2.4 | 0.7 | 7.9 | 0.8 | 6.4 | 0.8 | 5 | 0.5 | 4.3 | ns |
tPLZ(2) | 2.4 | 0.7 | 7.9 | 0.8 | 6.4 | 0.8 | 5 | 0.5 | 4.3 | |||
tPHZ(2) | DIR | B | 3.8 | 1 | 4.3 | 0.6 | 4.3 | 0.5 | 4.2 | 1.1 | 4.1 | ns |
tPLZ(2) | 3.8 | 1 | 4.3 | 0.6 | 4.3 | 0.5 | 4.2 | 1.1 | 4.1 | |||
tPZH(2)(1) | DIR | A | 5.9 | 8.5 | 7.7 | 7.2 | 6.9 | ns | ||||
tPZL(2)(1) | 5.9 | 8.5 | 7.7 | 7.2 | 6.9 | |||||||
tPZH(2)(1) | DIR | B | 5 | 12.8 | 10.4 | 8 | 6.9 | ns | ||||
tPZL(2)(1) | 5 | 12.8 | 10.4 | 8 | 6.9 |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
VCCB = 1.2 V | VCCB = 1.5 V ± 0.1 V |
VCCB = 1.8 V ± 0.15 V |
VCCB = 2.5 V ± 0.2 V |
VCCB = 3.3 V ± 0.3 V |
UNIT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TYP | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
tPLH(2) | A | B | 2.5 | 0.3 | 4.7 | 0.2 | 3.8 | 0.2 | 2.8 | 0.2 | 2.4 | ns |
tPHL(2) | 2.5 | 0.3 | 4.7 | 0.2 | 3.8 | 0.2 | 2.8 | 0.2 | 2.4 | |||
tPLH(2) | B | A | 2.1 | 0.6 | 3.6 | 0.4 | 3.1 | 0.3 | 2.6 | 0.3 | 2.4 | ns |
tPHL(2) | 2.1 | 0.6 | 3.6 | 0.4 | 3.1 | 0.3 | 2.6 | 0.3 | 2.4 | |||
tPHZ(2) | DIR | A | 2.9 | 1.1 | 8 | 1 | 6.5 | 1.3 | 4.7 | 1.2 | 4 | ns |
tPLZ(2) | 2.9 | 1.1 | 8 | 1 | 6.5 | 1.3 | 4.7 | 1.2 | 4 | |||
tPHZ(2) | DIR | B | 3.4 | 0.5 | 6.6 | 0.3 | 5.6 | 0.3 | 4.6 | 1.1 | 4.2 | ns |
tPLZ(2) | 3.4 | 0.5 | 6.6 | 0.3 | 5.6 | 0.3 | 4.6 | 1.1 | 4.2 | |||
tPZH(2)(1) | DIR | A | 5.5 | 10.2 | 8.7 | 7.2 | 6.6 | ns | ||||
tPZL(2)(1) | 5.5 | 10.2 | 8.7 | 7.2 | 6.6 | |||||||
tPZH(2)(1) | DIR | B | 5.4 | 12.7 | 10.3 | 7.5 | 6.4 | ns | ||||
tPZL(2)(1) | 5.4 | 12.7 | 10.3 | 7.5 | 6.4 |
PARAMETER | TEST CONDITIONS |
VCCA = VCCB = 1.2 V |
VCCA = VCCB = 1.5 V |
VCCA = VCCB = 1.8 V |
VCCA = VCCB = 2.5 V |
VCCA = VCCB = 3.3 V |
UNIT | |
---|---|---|---|---|---|---|---|---|
TYP | TYP | TYP | TYP | TYP | ||||
CpdA(1) | A-port input, B-port output |
CL = 0, f = 10 MHz, tr(2) = tf(2) = 1 ns |
3 | 3 | 3 | 3 | 4 | pF |
B-port input, A-port output |
13 | 13 | 14 | 15 | 15 | |||
CpdB(1) | A-port input, B-port output |
CL = 0, f = 10 MHz, tr(2) = tf(2) = 1 ns |
13 | 13 | 14 | 15 | 15 | pF |
B-port input, A-port output |
3 | 3 | 3 | 3 | 4 |
This dual-bit non-inverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA and accepts any supply voltage from 1.2 V to 3.6 V. The B port is designed to track VCCB and accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal low-voltage bidirectional translation and level-shifting between any of the 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes.
The SN74AVCH2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR pin) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated and from the B bus to the A bus when the A-port outputs are activated.
The SN74AVCH2T45 features active bus-hold circuitry.
The DIR input is powered by supply voltage from VCCA.
This device is fully specified for partial-power-down applications using off output current (Ioff). The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
The VCC isolation feature ensures that if either VCC input is at GND, both ports are put in a high-impedance state. This will prevent a false high or low logic being presented at the output.
NanoFree package technology is a major breakthrough in IC packaging concepts, using the die as the package.
The VCC isolation feature ensures that if either VCCA or VCCB are at GND, both ports will be in a high-impedance state (IOZ shown in the Functional Block Diagram). This prevents false logic levels from being presented to either bus.
Fully configurable 2-rail design allows each port to operate over the full 1.2 V to 3.6 V power-supply range.
The IO ports are up to 4.6 V tolerant
This device is fully specified for partial-power-down applications using off output current (Ioff). The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
Active bus-hold circuitry holds unused or un-driven inputs at a valid logic state. TI does not recommend using pull-up or pull-down resistors with the bus-hold circuitry.
INPUT DIR |
OPERATION |
---|---|
L | B data to A bus |
H | A data to B bus |