SCLS947 august   2023 SN74LV14B-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Switching Characteristics, VCC = 3.3 V ± 0.3 V
    7. 6.7  Switching Characteristics, VCC = 5 V ± 0.5 V
    8. 6.8  Noise Characteristics
    9. 6.9  Operating Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 CMOS Schmitt-Trigger Inputs
      2. 8.3.2 Balanced CMOS Push-Pull Outputs
      3. 8.3.3 Partial Power Down (Ioff)
      4. 8.3.4 Clamp Diode Structure
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Power Considerations
      2. 9.2.2 Input Considerations
      3. 9.2.3 Output Considerations
      4. 9.2.4 Detailed Design Procedure
      5. 9.2.5 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Balanced CMOS Push-Pull Outputs

This device includes balanced CMOS push-pull outputs. The term balanced indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times.

Unused push-pull CMOS outputs should be left disconnected.