SCLS430M May   1999  – September 2024 SN74LV4053A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Thermal Information: SN74LV4053A
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Characteristics VCC = 2.5 V ± 0.2 V
    7. 5.7 Timing Characteristics VCC = 3.3 V ± 0.3 V
    8. 5.8 Timing Characteristics VCC = 5 V ± 0.5 V
    9. 5.9 AC Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Functional Block Diagram
    2. 7.2 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DB|16
  • PW|16
  • DYY|16
  • NS|16
  • N|16
  • RGY|16
  • D|16
  • DGV|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER Condition TA VCC MIN TYP MAX UNIT
rON ON-state switch resistance IT = 2 mA,
VI = VCC or GND,
VINH = VIL
25°C 1.65 V 60 150
rON ON-state switch resistance IT = 2 mA,
VI = VCC or GND,
VINH = VIL
–40°C to 85°C 1.65 V 225
rON ON-state switch resistance  IT = 2 mA,
VI = VCC or GND,
VINH = VIL
–40°C to 125°C 1.65 V 225
rON ON-state switch resistance IT = 2 mA,
VI = VCC or GND,
VINH = VIL
25°C 2.3 V 38 180
–40°C to 85°C 225
–40°C to 125°C 225
25°C 3 V 30 150
–40°C to 85°C 190
–40°C to 125°C 190
25°C 4.5 V 22 75
–40°C to 85°C 100
–40°C to 125°C 100
rON(p) Peak ON-state resistance IT = 2 mA,
VI = GND to VCC,
VINH = VIL
25°C 1.65 V 220 600
rON(p) Peak ON-state resistance IT = 2 mA,
VI = GND to VCC,
VINH = VIL
–40°C to 85°C 1.65 V 700
rON(p) Peak ON-state resistance IT = 2 mA,
VI = GND to VCC,
VINH = VIL
–40°C to 125°C 1.65 V 700
rON(p) Peak ON-state resistance IT = 2 mA,
VI = GND to VCC,
VINH = VIL
25°C 2.3 V 113 500
–40°C to 85°C 600
–40°C to 125°C 600
25°C 3 V 54 180
–40°C to 85°C 225
–40°C to 125°C 225
25°C 4.5 V 31 100
–40°C to 85°C 125
–40°C to 125°C 125
ΔrON Difference in ON-state resistance between switches IT = 2 mA,
VI = GND to VCC,
VINH = VIL
25°C 1.65 V 3 40
ΔrON Difference in ON-state resistance between switches IT = 2 mA,
VI = GND to VCC,
VINH = VIL
–40°C to 85°C 1.65 V 50
ΔrON Difference in ON-state resistance between switches IT = 2 mA,
VI = GND to VCC,
VINH = VIL
–40°C to 85°C 1.65 V 50
ΔrON Difference in ON-state resistance between switches IT = 2 mA,
VI = GND to VCC,
VINH = VIL
25°C 2.3 V 2.1 30
–40°C to 85°C 40
–40°C to 125°C 40
25°C 3 V 1.4 20
–40°C to 85°C 30
–40°C to 125°C 30
25°C 4.5 V 1.3 15
–40°C to 85°C 20
–40°C to 125°C 20
IIH 
IIL
Control input current VI = 5.5 V or GND 25°C 0 to 5.5 V 0.1 µA
–40°C to 85°C 1
–40°C to 125°C 2
IS(off) OFF-state switch leakage current VI = VCC and VO = GND,
or VI = GND and VO = VCC,
VINH = VIH
25°C 5.5 V 0.1 µA
–40°C to 85°C 1
–40°C to 125°C 2
IS(on) ON-state switch leakage current VI = VCC or GND,
VINH = VIL
(see Figure4)
25°C 5.5 V 0.1 µA
–40°C to 85°C 1
–40°C to 125°C 2
ICC Supply current VI = VCC or GND
VINH = 0 V
25°C 5.5 V 0.01 µA
–40°C to 85°C 20
–40°C to 125°C 40
CIC Control input capacitance f = 10 MHz 25°C 3.3 V 2 pF
COS Switch terminal capacitance f = 10 MHz 25°C 3.3 V 5 pF
CIS Common ternminal capacitance f = 10 MHz 25°C 3.3 V 23 pF
COS(on) Common ternminal ON-capacitance f = 10 MHz 25°C 3.3 V 23 pF
CF Feedthrough capacitance f = 10 MHz 25°C 3.3 V 0.5 pF
CPD Power dissipation capacitance CL = 50 pF, f = 10 MHz 25°C 3.3 V 6 pF