SCLS985 January   2024 SN74LV4T125-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Additional Product Selection
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Noise Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Balanced CMOS 3-State Outputs
      2. 8.3.2 Clamp Diode Structure
      3. 8.3.3 LVxT Enhanced Input Voltage
        1. 8.3.3.1 Down Translation
        2. 8.3.3.2 Up Translation
    4. 8.4 Device Functional Modes
  10. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Down Translation

Signals can be translated down using the SN74LV4T125-EP. The voltage applied at the VCC will determine the output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical Characteristics tables.

When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and 0V in the LOW state. Ensure that the input signals in the HIGH state are between VIH(MIN) and 5.5V, and input signals in the LOW state are lower than VIL(MAX) as shown in Figure 8-2.

For example, standard CMOS inputs for devices operating at 5.0V, 3.3V or 2.5V can be down-translated to match 1.8V CMOS signals when operating from 1.8V VCC. See Figure 8-3.

Down Translation Combinations are as follows:

  • 1.8V VCC – Inputs from 2.5V, 3.3V, and 5.0V
  • 2.5V VCC – Inputs from 3.3V and 5.0V
  • 3.3V VCC – Inputs from 5.0V