SCAS285AC March   1993  – April 2022 SN54LVC14A , SN74LVC14A

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions: SN54LVC14A
    4. 6.4  Recommended Operating Conditions: SN74LVC14A
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics, SN54LVC14A
    7. 6.7  Electrical Characteristics, SN74LVC14A
    8. 6.8  Switching Characteristics, SN54LVC14A
    9. 6.9  Switching Characteristics, SN74LVC14A
    10. 6.10 Operating Characteristics
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Balanced High-Drive CMOS Push-Pull Outputs
      2. 8.3.2 CMOS Schmitt-Trigger Inputs
      3. 8.3.3 Clamp Diodes
      4. 8.3.4 Over-Voltage Tolerant Inputs
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • RGY|14
  • DB|14
  • DGV|14
  • PW|14
  • NS|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating listed in the Absolute Maximum Ratings table.

Each VCC terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1-µF bypass capacitor is recommended. If multiple pins are labeled VCC, then a 0.01-µF or 0.022-µF capacitor is recommended for each VCC because the VCC pins are tied together internally. For devices with dual supply pins operating at different voltages, for example VCC and VDD, a 0.1-µF bypass capacitor is recommended for each supply pin. To reject different frequencies of noise, use multiple bypass capacitors in parallel. Capacitors with values of 0.1 µF and 1 µF are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.