This automotive AEC-Q100 qualified single positive-edge-triggered D-type flip-flop is designed for 1.65-V to 5.5-V VCC operation.
When data at the data (D) input meets the setup time requirement, the data is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the level at the output.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.
PART NUMBER | PACKAGE | BODY SIZE |
---|---|---|
SN74LVC1G79QDCKRQ1 | SC70 (5) | 2.00 mm × 1.25 mm |
DATE | REVISION | NOTES |
---|---|---|
March 2017 | * | Initial release. |
PIN | I/O | DESCRIPTION | |
---|---|---|---|
NAME | DCK | ||
D | 1 | I | Data input |
CLK | 2 | I | Positive-Edge-Triggered Clock input |
GND | 3 | — | Ground |
Q | 4 | O | Non-inverted output |
VCC | 5 | — | Positive Supply |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | –0.5 | 6.5 | V | |
VI | Input voltage(2) | –0.5 | 6.5 | V | |
VO | Voltage range applied to any output in the high-impedance or power-off state(2) | –0.5 | 6.5 | V | |
VO | Voltage range applied to any output in the high or low state(2)(3) | –0.5 | VCC + 0.5 | V | |
IIK | Input clamp current | VI < 0 | –50 | mA | |
IOK | Output clamp current | VO < 0 | –50 | mA | |
IO | Continuous output current | ±50 | mA | ||
Continuous current through VCC or GND | ±100 | mA | |||
Tstg | Storage temperature | –65 | 150 | °C | |
TJ | Junction Temperature | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±4000 | V |
Charged-device model (CDM), per AEC Q100-011 | ±1000 |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage | Operating | 1.65 | 5.5 | V |
Data retention only | 1.5 | ||||
VIH | High-level input voltage | VCC = 1.65 V to 1.95 V | 0.65 × VCC | V | |
VCC = 2.3 V to 2.7 V | 1.7 | ||||
VCC = 3 V to 3.6 V | 2 | ||||
VCC = 4.5 V to 5.5 V | 0.7 × VCC | ||||
VIL | Low-level input voltage | VCC = 1.65 V to 1.95 V | 0.35 × VCC | V | |
VCC = 2.3 V to 2.7 V | 0.7 | ||||
VCC = 3 V to 3.6 V | 0.8 | ||||
VCC = 4.5 V to 5.5 V | 0.3 × VCC | ||||
VI | Input voltage | 0 | 5.5 | V | |
VO | Output voltage | 0 | VCC | V | |
IOH | High-level output current | VCC = 1.65 V | –4 | mA | |
VCC = 2.3 V | –8 | ||||
VCC = 3 V | –16 | ||||
–24 | |||||
VCC = 4.5 V | –32 | ||||
IOL | Low-level output current | VCC = 1.65 V | 4 | mA | |
VCC = 2.3 V | 8 | ||||
VCC = 3 V | 16 | ||||
24 | |||||
VCC = 4.5 V | 32 | ||||
Δt/Δv | Input transition rise or fall rate | VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V | 20 | ns/V | |
VCC = 3.3 V ± 0.3 V | 10 | ||||
VCC = 5 V ± 0.5 V | 5 | ||||
TA | Operating free-air temperature | –40 | 125 | °C |
THERMAL METRIC(1) | SN74LVC1G79-Q1 | UNIT | |
---|---|---|---|
DCK | |||
5 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 277.6 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 179.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 75.9 | °C/W |
ψJT | Junction-to-top characterization parameter | 49.7 | °C/W |
ψJB | Junction-to-board characterization parameter | 75.1 | °C/W |
PARAMETER | TEST CONDITIONS | VCC | –40°C to +85°C | –40°C to +125°C | UNIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MIN | TYP(1) | MAX | MIN | TYP(1) | MAX | ||||||
VOH | IOH = –100 µA | 1.65 V to 5.5 V | VCC – 0.1 | VCC – 0.1 | V | ||||||
IOH = –4 mA | 1.65 V | 1.2 | 1.2 | ||||||||
IOH = –8 mA | 2.3 V | 1.9 | 1.9 | ||||||||
IOH = –16 mA | 3 V | 2.4 | 2.4 | ||||||||
IOH = –24 mA | 2.3 | 2.3 | |||||||||
IOH = –32 mA | 4.5 V | 3.8 | 3.8 | ||||||||
VOL | IOL = 100 µA | 1.65 V to 5.5 V | 0.1 | 0.1 | V | ||||||
IOL = 4 mA | 1.65 V | 0.45 | 0.45 | ||||||||
IOL = 8 mA | 2.3 V | 0.3 | 0.3 | ||||||||
IOL = 16 mA | 3 V | 0.4 | 0.4 | ||||||||
IOL = 24 mA | 0.55 | 0.55 | |||||||||
IOL = 32 mA | 4.5 V | 0.55 | 0.55 | ||||||||
II | All inputs | VI = 5.5 V or GND | 0 to 5.5 V | ±10 | ±5 | µA | |||||
Ioff | VI or VO = 5.5 V | 0 | ±10 | ±10 | µA | ||||||
ICC | VI = 5.5 V or GND, | IO = 0 | 1.65 V to 5.5 V | 10 | 10 | µA | |||||
ΔICC | One input at VCC – 0.6 V, Other inputs at VCC or GND |
3 V to 5.5 V | 500 | 500 | µA | ||||||
Ci | VI = VCC or GND | 3.3 V | 4 | 4 | pF |
PARAMETER | –40°C to +85°C | UNIT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VCC = 1.8 ± 0.15 V |
VCC = 2.5 ± 0.2 V |
VCC = 3.3 V ± 0.3 V |
VCC = 5 V ± 0.5 V |
||||||||
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
fclock | Clock frequency | 160 | 160 | 160 | 160 | MHz | |||||
tw | Pulse duration, CLK high or low | 2.5 | 2.5 | 2.5 | 2.5 | ns | |||||
tsu | Setup time before CLK↑ | Data high | 2.2 | 1.4 | 1.3 | 1.2 | ns | ||||
Data low | 2.6 | 1.4 | 1.3 | 1.2 | |||||||
th | Hold time, data after CLK↑ | 0.3 | 0.4 | 1 | 0.5 | ns |
PARAMETER | –40°C to +125°C | UNIT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VCC = 1.8 ± 0.15 V |
VCC = 2.5 ± 0.2 V |
VCC = 3.3 V ± 0.3 V |
VCC = 5 V ± 0.5 V |
||||||||
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
fclock | Clock frequency | 160 | 160 | 160 | 160 | MHz | |||||
tw | Pulse duration, CLK high or low | 2.5 | 2.5 | 2.5 | 2.5 | ns | |||||
tsu | Setup time before CLK↑ | Data high | 2.2 | 1.4 | 1.3 | 1.2 | ns | ||||
Data low | 2.6 | 1.4 | 1.3 | 1.2 | |||||||
th | Hold time, data after CLK↑ | 0.3 | 0.4 | 1 | 0.5 | ns |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
TA = –40°C to +85°C | UNIT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VCC = 1.8 V ± 0.15 V |
VCC = 2.5 V ± 0.2 V |
VCC = 3.3 V ± 0.3 V |
VCC = 5 V ± 0.5 V |
||||||||
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
fmax | 160 | 160 | 160 | 160 | MHz | ||||||
tpd | CLK | Q | 2.5 | 9.1 | 1.2 | 6 | 1 | 4 | 0.8 | 3.8 | ns |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
TA = –40°C to +85°C | UNIT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VCC = 1.8 V ± 0.15 V |
VCC = 2.5 V ± 0.2 V |
VCC = 3.3 V ± 0.3 V |
VCC = 5 V ± 0.5 V |
||||||||
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
fmax | 160 | 160 | 160 | 160 | MHz | ||||||
tpd | CLK | Q | 3.9 | 9.9 | 2 | 7 | 1.7 | 5 | 1 | 4.5 | ns |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
TA = –40°C to +125°C | UNIT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VCC = 1.8 V ± 0.15 V |
VCC = 2.5 V ± 0.2 V |
VCC = 3.3 V ± 0.3 V |
VCC = 5 V ± 0.5 V |
||||||||
MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ||||
fmax | 160 | 160 | 160 | 160 | MHz | ||||||
tpd | CLK | Q | 3.9 | 12 | 2 | 8.5 | 1.7 | 6 | 1 | 5 | ns |
PARAMETER | TEST CONDITIONS |
VCC = 1.8 V | VCC = 2.5 V | VCC = 3.3 V | VCC = 5 V | UNIT | |
---|---|---|---|---|---|---|---|
TYP | TYP | TYP | TYP | ||||
Cpd | Power dissipation capacitance | f = 10 MHz | 26 | 26 | 27 | 30 | pF |
The SN74LVC1G79-Q1 is a single positive-edge-triggered D-type flip-flop and is AEC-Q100 qualified for automotive applications. Data at the input (D) is transferred to the output (Q) on the positive-going edge of the clock pulse when the setup time requirement is met. Because the clock triggering occurs at a voltage level, it is not directly related to the rise time of the clock pulse. This allows for data at the input to be changed without affecting the level at the output, following the hold-time interval.
A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and damage due to over-current. The electrical and thermal limits defined the in the Absolute Maximum Ratings must be followed at all times.
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage, given in the Recommended Operating Conditions, and the maximum input leakage current, given in the Electrical Characteristics, using ohm's law (R = V ÷ I).
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating Conditions to avoid excessive currents and oscillations. If tolerance to a slow or noisy input signal is required, a device with a Schmitt-trigger input should be utilized to condition the input signal prior to the standard CMOS input.
The inputs and outputs to this device have negative clamping diodes.
CAUTION
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The maximum leakage into or out of any input or output pin on the device is specified by Ioff in the Electrical Characteristics.
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in the Absolute Maximum Ratings.
Table 1 shows the functional modes of SN74LVC1G79-Q1.
INPUTS | OUTPUT Y |
|
---|---|---|
CLK | D | |
↑ | H | H |
↑ | L | L |
L | X | Q0 |