SLASF30A January   2022  – December 2024 TAA5212

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements: I2C Interface
    7. 5.7  Switching Characteristics: I2C Interface
    8. 5.8  Timing Requirements: SPI Interface
    9. 5.9  Switching Characteristics: SPI Interface
    10. 5.10 Timing Requirements: TDM, I2S or LJ Interface
    11. 5.11 Switching Characteristics: TDM, I2S or LJ Interface
    12. 5.12 Timing Requirements: PDM Digital Microphone Interface
    13. 5.13 Switching Characteristics: PDM Digital Microphone Interface
    14. 5.14 Timing Diagrams
    15. 5.15 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Serial Interfaces
        1. 6.3.1.1 Control Serial Interfaces
        2. 6.3.1.2 Audio Serial Interfaces
          1. 6.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 6.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 6.3.1.2.3 Left-Justified (LJ) Interface
        3. 6.3.1.3 Using Multiple Devices With Shared Buses
      2. 6.3.2  Phase-Locked Loop (PLL) and Clock Generation
      3. 6.3.3  Input Channel Configurations
      4. 6.3.4  Reference Voltage
      5. 6.3.5  Programmable Microphone Bias
      6. 6.3.6  Signal-Chain Processing
        1. 6.3.6.1 ADC Signal-Chain
          1. 6.3.6.1.1  6 to 4 Input Select Multiplexer (6:4 MUX)
          2. 6.3.6.1.2  Programmable Channel Gain and Digital Volume Control
          3. 6.3.6.1.3  Programmable Channel Gain Calibration
          4. 6.3.6.1.4  Programmable Channel Phase Calibration
          5. 6.3.6.1.5  Programmable Digital High-Pass Filter
          6. 6.3.6.1.6  Programmable Digital Biquad Filters
          7. 6.3.6.1.7  Programmable Channel Summer and Digital Mixer
          8. 6.3.6.1.8  Configurable Digital Decimation Filters
            1. 6.3.6.1.8.1 Linear-phase filters
              1. 6.3.6.1.8.1.1 Sampling Rate: 8kHz or 7.35kHz
              2. 6.3.6.1.8.1.2 Sampling Rate: 16kHz or 14.7kHz
              3. 6.3.6.1.8.1.3 Sampling Rate: 24kHz or 22.05kHz
              4. 6.3.6.1.8.1.4 Sampling Rate: 32kHz or 29.4kHz
              5. 6.3.6.1.8.1.5 Sampling Rate: 48kHz or 44.1kHz
              6. 6.3.6.1.8.1.6 Sampling Rate: 96kHz or 88.2kHz
              7. 6.3.6.1.8.1.7 Sampling Rate: 192kHz or 176.4kHz
            2. 6.3.6.1.8.2 Low-latency Filters
              1. 6.3.6.1.8.2.1 Sampling Rate: 24kHz or 22.05kHz
              2. 6.3.6.1.8.2.2 Sampling Rate: 32kHz or 29.4kHz
              3. 6.3.6.1.8.2.3 Sampling Rate: 48kHz or 44.1kHz
              4. 6.3.6.1.8.2.4 Sampling Rate: 96kHz or 88.2kHz
              5. 6.3.6.1.8.2.5 Sampling Rate: 192kHz or 176.4kHz
            3. 6.3.6.1.8.3 Ultra Low-latency Filters
              1. 6.3.6.1.8.3.1 Sampling Rate: 24kHz or 22.05kHz
              2. 6.3.6.1.8.3.2 Sampling Rate: 32kHz or 29.4kHz
              3. 6.3.6.1.8.3.3 Sampling Rate: 48kHz or 44.1kHz
              4. 6.3.6.1.8.3.4 Sampling Rate: 96kHz or 88.2kHz
              5. 6.3.6.1.8.3.5 Sampling Rate: 192kHz or 176.4kHz
          9. 6.3.6.1.9  Automatic Gain Controller (AGC)
          10. 6.3.6.1.10 Voice Activity Detection (VAD)
          11. 6.3.6.1.11 Ultrasonic Activity Detection (UAD)
      7. 6.3.7  Digital PDM Microphone Record Channel
      8. 6.3.8  Interrupts, Status, and Digital I/O Pin Multiplexing
      9. 6.3.9  Power Tune Mode
      10. 6.3.10 Incremental ADC (IADC) Mode
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode or Software Shutdown
      2. 6.4.2 Active Mode
      3. 6.4.3 Software Reset
    5. 6.5 Programming
      1. 6.5.1 Control Serial Interfaces
        1. 6.5.1.1 I2C Control Interface
          1. 6.5.1.1.1 General I2C Operation
          2. 6.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers
            1. 6.5.1.1.2.1 I2C Single-Byte Write
            2. 6.5.1.1.2.2 I2C Multiple-Byte Write
            3. 6.5.1.1.2.3 I2C Single-Byte Read
            4. 6.5.1.1.2.4 I2C Multiple-Byte Read
        2. 6.5.1.2 SPI Control Interface
  8. Register Maps
    1. 7.1 Device Configuration Registers
      1. 7.1.1 TAA5212_B0_P0 Registers
      2. 7.1.2 TAA5212_B0_P1 Registers
      3. 7.1.3 TAA5212_B0_P3 Registers
    2. 7.2 Programmable Coefficienct Registers
      1. 7.2.1 Programmable Coefficient Registers: Page 8
      2. 7.2.2 Programmable Coefficient Registers: Page 9
      3. 7.2.3 Programmable Coefficient Registers: Page 10
      4. 7.2.4 Programmable Coefficient Registers: Page 11
      5. 7.2.5 Programmable Coefficient Registers: Page 19
      6. 7.2.6 Programmable Coefficient Registers: Page 27
      7. 7.2.7 Programmable Coefficient Registers: Page 28
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Application Performance Plots
      5. 8.2.5 Example Device Register Configuration Scripts for EVM Setup
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 AVDD_MODE for 1.8V Operation
      2. 8.3.2 IOVDD_IO_MODE for 1.8V and 1.2V Operation
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Audio Serial Interfaces

Digital audio data flows between the host processor and the TAA5212 on the digital audio serial interface (ASI), or audio bus. This highly flexible ASI bus includes a TDM mode for multichannel operation, support for I2S or left-justified protocols format, programmable data length options, very flexible controller-target configurability for bus clock lines and the ability to communicate with multiple devices within a system directly.

The TAA5212 supports up to two ASI Interfaces. Secondary ASI Clock and Data Pins can be configured by setting GPIO's. Frame Sync of two ASI's must be synchronous. See TAX5X1X Synchronous Sample Rate Conversion application report for more details on Secondary ASI.

The bus protocol TDM, I2S, or left-justified (LJ) format can be selected for primary ASI by using the PASI_FORMAT[1:0] (P0_R26_D[7:6]) register bits. As shown in Table 6-2 and Table 6-3, these modes are all most significant byte (MSB)-first, pulse code modulation (PCM) data format, with the output channel data word-length programmable as 16, 20, 24, or 32 bits by configuring the PASI_WLEN[1:0] (P0_R26_D[5:4]) register bits.

Table 6-2 Primary Audio Serial Interface Format
P0_R26_D[7:6] : PASI_FORMAT[1:0] PRIMARY AUDIO SERIAL INTERFACE FORMAT
00 (default) Time division multiplexing (TDM) mode
01 Inter IC sound (I2S) mode
10 Left-justified (LJ) mode
11 Reserved (do not use this setting)
Table 6-3 Primary Audio Serial Interface Data Word-Length
P0_R26_D[5:4] : PASI_WLEN[1:0] PRIMARY AUDIO OUTPUT CHANNEL DATA WORD-LENGTH
Low Data word-length set to 16 bits
Low Data word-length set to 20 bits
High Data word-length set to 24 bits
High Data word-length set to 32 bits

The frame sync pin, FSYNC, is used in this audio bus protocol to define the beginning of a frame and has the same frequency as the output data sample rates. The bit clock pin, BCLK, is used to clock out the digital audio data across the serial bus. The number of bit-clock cycles in a frame must accommodate multiple device active output channels with the programmed data word length. A frame consists of multiple time-division channel slots (up to 32) with the programmed word lengh to allow all output channel audio data transmissions to complete on the audio bus by a device or multiple devices sharing the same audio bus. The device supports up to eight output channels that can be configured on primary ASI bus to place their audio data on bus slot 0 to slot 31. Table 6-4 lists the output channel-1 slot configuration settings. In I2S and LJ mode, the slots are divided into two sets, left-channel slots and right-channel slots, as described in the Section 6.3.1.2.2 and Section 6.3.1.2.3.

Table 6-4 Output Channel-1 Slot Assignment Settings
P0_R30_D[4:0] : PASI_TX_CH1_SLOT_NUM[4:0] OUTPUT CHANNEL 1 SLOT ASSIGNMENT
0 0000 = 0d (default) Slot 0 for TDM or left slot 0 for I2S, LJ.
0 0001 = 1d Slot 1 for TDM or left slot 1 for LJ.
... ...
0 1111 = 15d Slot 15 for TDM or left slot 15 for LJ
1 0000 = 16d Slot 16 for TDM or right slot 0 for I2S, LJ.
... ...
1 1110 = 30d Slot 30 for TDM or right slot 14 for LJ
1 1111 = 31d Slot 31 for TDM or right slot 15 for LJ

Similarly, the slot assignment setting for output channel 2 to channel 8 can be done using the PASI_TX_CH2_SLOT_NUM (P0_R31_D[4:0]) to PASI_TX_CH8_SLOT_NUM (P0_R37_D[4:0]) registers respectively.

The slot word length is the same as the primary ASI channel word length set for the device. The output channel data word length must be set to the same value for all devices if all devices share the same ASI bus in a system. The maximum number of slots possible for the ASI bus in a system is limited by the available bus bandwidth, which depends upon the BCLK frequency, output data sample rate used, and the channel data word length configured.

The device also includes a feature that offsets the start of the slot data transfer with respect to the frame sync by up to 31 cycles of the bit clock. Offset can be configured independently for input and output data paths. Table 6-5 and Table 6-6 lists the programmable offset configuration settings for transmission and receive path (for daisy DIN) respectively.

Table 6-5 Programmable Offset Settings for the ASI Slot Start for transmission
P0_R28_D[4:0] : PASI_TX_OFFSET[4:0] PROGRAMMABLE OFFSET SETTING FOR SLOT DATA TRANSMISSION START
0 0000 = 0d (default) The device follows the standard protocol timing without any offset
0 0001 = 1d Slot start is offset by one BCLK cycle, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to standard protocol timing
…... …...
1 1110 = 30d Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to standard protocol timing
1 1111 = 31d Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to standard protocol timing
Table 6-6 Programmable Offset Settings for the ASI Slot Start for Receive
P0_R38_D[4:0] : PASI_RX_OFFSET[4:0] PROGRAMMABLE OFFSET SETTING FOR SLOT DATA RECEIVE START
0 0000 = 0d (default) The device follows the standard protocol timing without any offset.
0 0001 = 1d Slot start is offset by one BCLK cycle, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by one BCLK cycle, as compared to standard protocol timing
…... …...
1 1110 = 30d Slot start is offset by 30 BCLK cycles, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by 30 BCLK cycles, as compared to standard protocol timing
1 1111 = 31d Slot start is offset by 31 BCLK cycles, as compared to standard protocol timing. For I2S or LJ, the left and right slot start is offset by 31 BCLK cycles, as compared to standard protocol timing

The device also features the ability to invert the polarity of the frame sync pin, FSYNC, used to transfer the audio data as compared to the default FSYNC polarity used in standard protocol timing. This feature can be set using the PASI_FSYNC_POL (P0_R26_D[3]) register bit. Similarly, the device can invert the polarity of the bit clock pin, BCLK, which can be set using the PASI_BCLK_POL (P0_R26_D[2]) register bit.

In addition, the word clock and bit clock can be independently configured in either controller or target mode, for flexible connectivity to a wide variety of processors. The word clock is used to define the beginning of a frame, and may be programmed as either a pulse or a square-wave signal. The frequency of this clock corresponds to the maximum of the selected ADC sampling frequencies.