SLASF24 December   2023 TAC5112

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements: I2C Interface
    7. 6.7  Switching Characteristics: I2C Interface
    8. 6.8  Timing Requirements: SPI Interface
    9. 6.9  Switching Characteristics: SPI Interface
    10. 6.10 Timing Requirements: TDM, I2S or LJ Interface
    11. 6.11 Switching Characteristics: TDM, I2S or LJ Interface
    12. 6.12 Timing Requirements: PDM Digital Microphone Interface
    13. 6.13 Switching Characteristics: PDM Digial Microphone Interface
    14. 6.14 Timing Diagrams
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Serial Interfaces
        1. 7.3.1.1 Control Serial Interfaces
        2. 7.3.1.2 Audio Serial Interfaces
          1. 7.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 7.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 7.3.1.2.3 Left-Justified (LJ) Interface
        3. 7.3.1.3 Using Multiple Devices With Shared Buses
      2. 7.3.2 Phase-Locked Loop (PLL) and Clock Generation
      3. 7.3.3 Input Channel Configurations
      4. 7.3.4 Output Channel Configurations
      5. 7.3.5 Reference Voltage
      6. 7.3.6 Programmable Microphone Bias
      7. 7.3.7 Signal-Chain Processing
        1. 7.3.7.1 ADC Signal-Chain
          1. 7.3.7.1.1 Programmable Channel Gain and Digital Volume Control
          2. 7.3.7.1.2 Programmable Channel Gain Calibration
          3. 7.3.7.1.3 Programmable Channel Phase Calibration
          4. 7.3.7.1.4 Programmable Digital High-Pass Filter
          5. 7.3.7.1.5 Programmable Digital Biquad Filters
          6. 7.3.7.1.6 Programmable Channel Summer and Digital Mixer
          7. 7.3.7.1.7 Configurable Digital Decimation Filters
            1. 7.3.7.1.7.1 Linear Phase Filters
              1. 7.3.7.1.7.1.1 Sampling Rate: 16 kHz or 14.7 kHz
              2. 7.3.7.1.7.1.2 Sampling Rate: 24 kHz or 22.05 kHz
              3. 7.3.7.1.7.1.3 Sampling Rate: 32 kHz or 29.4 kHz
              4. 7.3.7.1.7.1.4 Sampling Rate: 48 kHz or 44.1 kHz
              5. 7.3.7.1.7.1.5 Sampling Rate: 96 kHz or 88.2 kHz
              6. 7.3.7.1.7.1.6 Sampling Rate: 384 kHz or 352.8 kHz
        2. 7.3.7.2 DAC Signal-Chain
          1. 7.3.7.2.1 Programmable Channel Gain and Digital Volume Control
          2. 7.3.7.2.2 Programmable Channel Gain Calibration
          3. 7.3.7.2.3 Programmable Digital High-Pass Filter
          4. 7.3.7.2.4 Programmable Digital Biquad Filters
          5. 7.3.7.2.5 Programmable Digital Mixer
          6. 7.3.7.2.6 Configurable Digital Interpolation Filters
            1. 7.3.7.2.6.1 Linear Phase Filters
              1. 7.3.7.2.6.1.1 Sampling Rate: 16 kHz or 14.7 kHz
              2. 7.3.7.2.6.1.2 Sampling Rate: 24 kHz or 22.05 kHz
              3. 7.3.7.2.6.1.3 Sampling Rate: 32 kHz or 29.4 kHz
              4. 7.3.7.2.6.1.4 Sampling Rate: 48 kHz or 44.1 kHz
              5. 7.3.7.2.6.1.5 Sampling Rate: 96 kHz or 88.2 kHz
              6. 7.3.7.2.6.1.6 Sampling Rate: 384 kHz or 352.8 kHz
      8. 7.3.8 Interrupts, Status, and Digital I/O Pin Multiplexing
    4. 7.4 Device Functional Modes
    5. 7.5 Register Maps
      1. 7.5.1 TAC5212 Registers
      2. 7.5.2 TAC5212 Registers
      3. 7.5.3 TAC5212 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
  10. Power Supply Recommendations
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Channel Configurations

The device consists of two pairs of analog input pins (INxP and INxM) that can be configured as differential inputs or single-ended inputs for the recording channel. The device supports simultaneous recording of up to two channels using the high-performance multichannel ADC. The input source for the analog pins can be from electret condenser analog microphones, microelectrical-mechanical system (MEMS) analog microphones, or line-in (auxiliary) inputs from the system board. Analog inputs support differential input, single-ended inputs(two pin and one-pin) with AC and DC coupling options. Additionally, if the application uses digital PDM microphones for the recording, GPIO,GPI and GPO pins can be reconfigured in the device to support up to four channels for the digital microphone recording. TAC5112 supports incremental mode of ADC where analog input channels can be used for DC measurements. This can be configured by setting IADC_EN(P0_R81_D7). Table 7-9 shows the input source selection for the record channel.

Table 7-8 Input Source Selection for the Record Channel
P0_R80_D[7:6] : ADC_CH1_INSRC[1:0] INPUT CHANNEL 1 RECORD SOURCE SELECTION
00 (default) Analog differential input for channel 1
01 Analog single-ended Input for channel 1 (Signal on one input pin and Ground on other pin)
10 Analog single-ended Input on IN1P
11 Analog single-ended Input on IN1M

Similarly, the input source selection setting for input channel 2 can be configured using the ADC_CH2_INSRC[1:0] (P0_R85_D[7:6]) register bits.

Typically, voice or audio signal inputs are capacitively coupled (AC-coupled) to the device; however, the device also supports an option for DC-coupled inputs to save board space. This configuration can be done independently for each channel by setting the input common mode tolerance in ADC_CH1_CM_TOL (P0_R60_D[3:2]), ADC_CH2_CM_TOL(P0_R85_D[3:2]) register bits. The INM pin can be directly grounded in Rail to Rail Common Mode (see Figure 7-15), but the INM pin must be grounded after the AC-coupling capacitor whenever ADC_CHx_INSRC is set to 2'b01 and ADC_CHx_CM_TOL is set to 2'b01(see Figure 7-16) for the single-ended input configuration. For the best dynamic range performance, the differential AC-coupled input must be used .

GUID-20231210-SS0I-LQSR-R4FK-J4FPC18M6Q9N-low.svgFigure 7-15 Single-Ended DC-Coupled Input Connection
GUID-20231210-SS0I-5CDQ-D09W-FP7XHH0FZMB2-low.svgFigure 7-16 Single-Ended AC-Coupled Input Connection

The device supports the typical input impedance on INxP or INxM of 40 kΩ.

The value of the coupling capacitor in AC-coupled mode must be chosen so that the high-pass filter formed by the coupling capacitor and the input impedance do not affect the signal content. Before proper recording can begin, this coupling capacitor must be charged up to the common-mode voltage at power-up. To enable quick charging, the device has modes to speed up the charging of the coupling capacitor. The default value of the quick-charge timing is set for a coupling capacitor up to 1 µF. However, if a higher-value capacitor is used in the system, then the quick-charging timing can be increased by using the INCAP_QCHG (P0_R5_D[7:6]) register bits. For best distortion performance, use the low-voltage coefficient capacitors for AC coupling.