SLASF36A January   2024  – December 2024 TAC5311-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements: I2C Interface
    7. 5.7  Switching Characteristics: I2C Interface
    8. 5.8  Timing Requirements: SPI Interface
    9. 5.9  Switching Characteristics: SPI Interface
    10. 5.10 Timing Requirements: TDM, I2S or LJ Interface
    11. 5.11 Switching Characteristics: TDM, I2S or LJ Interface
    12. 5.12 Timing Requirements: PDM Digital Microphone Interface
    13. 5.13 Switching Characteristics: PDM Digial Microphone Interface
    14. 5.14 Timing Diagrams
    15. 5.15 Typical Charactaristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Serial Interfaces
        1. 6.3.1.1 Control Serial Interfaces
        2. 6.3.1.2 Audio Serial Interfaces
          1. 6.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 6.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 6.3.1.2.3 Left-Justified (LJ) Interface
        3. 6.3.1.3 Using Multiple Devices With Shared Buses
      2. 6.3.2  Phase-Locked Loop (PLL) and Clock Generation
      3. 6.3.3  Input Channel Configuration
      4. 6.3.4  Reference Voltage
      5. 6.3.5  Microphone Bias
      6. 6.3.6  Digital PDM Microphone Record Channel
      7. 6.3.7  Signal-Chain Processing
        1. 6.3.7.1 ADC Signal-Chain
          1. 6.3.7.1.1 Programmable Channel Gain and Digital Volume Control
          2. 6.3.7.1.2 Programmable Channel Gain Calibration
          3. 6.3.7.1.3 Programmable Channel Phase Calibration
          4. 6.3.7.1.4 Programmable Digital High-Pass Filter
          5. 6.3.7.1.5 Programmable Digital Biquad Filters
          6. 6.3.7.1.6 Programmable Channel Summer and Digital Mixer
          7. 6.3.7.1.7 Configurable Digital Decimation Filters
            1. 6.3.7.1.7.1 Linear-phase filters
              1. 6.3.7.1.7.1.1 Sampling Rate: 8kHz or 7.35kHz
              2. 6.3.7.1.7.1.2 Sampling Rate: 16kHz or 14.7kHz
              3. 6.3.7.1.7.1.3 Sampling Rate: 24kHz or 22.05kHz
              4. 6.3.7.1.7.1.4 Sampling Rate: 32kHz or 29.4kHz
              5. 6.3.7.1.7.1.5 Sampling Rate: 48kHz or 44.1kHz
              6. 6.3.7.1.7.1.6 Sampling Rate: 96kHz or 88.2kHz
              7. 6.3.7.1.7.1.7 Sampling Rate: 192kHz or 176.4kHz
              8. 6.3.7.1.7.1.8 Sampling Rate: 384kHz or 352.8kHz
              9. 6.3.7.1.7.1.9 Sampling Rate: 768kHz or 705.6kHz
            2. 6.3.7.1.7.2 Low-latency Filters
              1. 6.3.7.1.7.2.1 Sampling Rate: 24kHz or 22.05kHz
              2. 6.3.7.1.7.2.2 Sampling Rate: 32kHz or 29.4kHz
              3. 6.3.7.1.7.2.3 Sampling Rate: 48kHz or 44.1kHz
              4. 6.3.7.1.7.2.4 Sampling Rate: 96kHz or 88.2kHz
              5. 6.3.7.1.7.2.5 Sampling Rate: 192kHz or 176.4kHz
            3. 6.3.7.1.7.3 Ultra-Low-Latency Filters
              1. 6.3.7.1.7.3.1 Sampling Rate: 24kHz or 22.05kHz
              2. 6.3.7.1.7.3.2 Sampling Rate: 32kHz or 29.4kHz
              3. 6.3.7.1.7.3.3 Sampling Rate: 48kHz or 44.1kHz
              4. 6.3.7.1.7.3.4 Sampling Rate: 96kHz or 88.2kHz
              5. 6.3.7.1.7.3.5 Sampling Rate: 192kHz or 176.4kHz
        2. 6.3.7.2 DAC Signal-Chain
          1. 6.3.7.2.1 Programmable Channel Gain and Digital Volume Control
          2. 6.3.7.2.2 Programmable Channel Gain Calibration
          3. 6.3.7.2.3 Programmable Digital High-Pass Filter
          4. 6.3.7.2.4 Programmable Digital Biquad Filters
          5. 6.3.7.2.5 Programmable Digital Mixer
          6. 6.3.7.2.6 Configurable Digital Interpolation Filters
            1. 6.3.7.2.6.1 Linear-phase filters
              1. 6.3.7.2.6.1.1 Sampling Rate: 8kHz or 7.35kHz
              2. 6.3.7.2.6.1.2 Sampling Rate: 16kHz or 14.7kHz
              3. 6.3.7.2.6.1.3 Sampling Rate: 24kHz or 22.05kHz
              4. 6.3.7.2.6.1.4 Sampling Rate: 32kHz or 29.4kHz
              5. 6.3.7.2.6.1.5 Sampling Rate: 48kHz or 44.1kHz
              6. 6.3.7.2.6.1.6 Sampling Rate: 96kHz or 88.2kHz
              7. 6.3.7.2.6.1.7 Sampling Rate: 192kHz or 176.4kHz
            2. 6.3.7.2.6.2 Low-latency Filters
              1. 6.3.7.2.6.2.1 Sampling Rate: 24kHz or 22.05kHz
              2. 6.3.7.2.6.2.2 Sampling Rate: 32kHz or 29.4kHz
              3. 6.3.7.2.6.2.3 Sampling Rate: 48kHz or 44.1kHz
              4. 6.3.7.2.6.2.4 Sampling Rate: 96kHz or 88.2kHz
              5. 6.3.7.2.6.2.5 Sampling Rate: 192kHz or 176.4kHz
      8. 6.3.8  Interrupts, Status, and Digital I/O Pin Multiplexing
      9. 6.3.9  Input DC Fault Diagnostics
      10. 6.3.10 Power Tune Mode
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode or Software Shutdown
      2. 6.4.2 Software Reset
      3. 6.4.3 Active Mode
    5. 6.5 Programming
      1. 6.5.1 Control Serial Interfaces
        1. 6.5.1.1 I2C Control Interface
          1. 6.5.1.1.1 General I2C Operation
          2. 6.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers
            1. 6.5.1.1.2.1 I2C Single-Byte Write
            2. 6.5.1.1.2.2 I2C Multiple-Byte Write
            3. 6.5.1.1.2.3 I2C Single-Byte Read
            4. 6.5.1.1.2.4 I2C Multiple-Byte Read
        2. 6.5.1.2 SPI Control Interface
  8. Register Maps
    1. 7.1 Device Configuration Registers
      1. 7.1.1 TAC5311-Q1_B0_P0 Registers
      2. 7.1.2 TAC5311-Q1_B0_P1 Registers
    2. 7.2 Programmable Coefficienct Registers
      1. 7.2.1  Programmable Coefficient Registers: Page 8
      2. 7.2.2  Programmable Coefficient Registers: Page 9
        1. 7.2.2.1 TAC5311-Q1_B0_P3 Registers
      3. 7.2.3  Programmable Coefficient Registers: Page 10
      4. 7.2.4  Programmable Coefficient Registers: Page 11
      5. 7.2.5  Programmable Coefficient Registers: Page 15
      6. 7.2.6  Programmable Coefficient Registers: Page 16
      7. 7.2.7  Programmable Coefficient Registers: Page 17
      8. 7.2.8  Programmable Coefficient Registers: Page 18
      9. 7.2.9  Programmable Coefficient Registers: Page 19
      10. 7.2.10 Programmable Coefficient Registers: Page 25
      11. 7.2.11 Programmable Coefficient Registers: Page 26
      12. 7.2.12 Programmable Coefficient Registers: Page 27
      13. 7.2.13 Programmable Coefficient Registers: Page 28
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
      4. 8.2.4 Application Performance Plots
      5. 8.2.5 Example Device Register Configuration Scripts for EVM Setup
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 IOVDD_IO_MODE for 1.8V and 1.2V Operation
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

SPI Control Interface

The general SPI protocol allows full-duplex, synchronous, serial communication between a host processor (the controller) and peripheral devices. The SPI controller (in this case, the host processor) generates the synchronizing clock (driven on to SCLK) and initiates transmissions by taking the peripheral-select pin CSZ from high to low. The SPI peripheral devices (such as the TAC5311-Q1) depend on a controller device to start and synchronize transmissions. A transmission begins when initiated by an SPI controller. The byte from the SPI controller begins shifting in on the peripheral PICO pin under the control of the controller serial clock (driven onto SCLK). When the byte shifts in on the PICO pin, a byte shifts out on the POCI pin to the controller shift register.Table 6-60

mentions the pin assignment for SPI mode of control.

Table 6-60 Pin Assigments for SPI Control
Pin Number Pin Name Pin Name in SPI Mode Description
9 SCL SCLK SPI serial bit clock
10 SDA PICO SPI peripheral input pin
23 or 11 GPO1A or GPIO1 POCI SPI peripheral output pin
22 ADDRA CSZ SPI chip select pin

The TAC5311-Q1 supports a standard SPI control protocol with a clock polarity setting of 0 (typical microprocessor SPI control bit CPOL = 0) and a clock phase setting of 1 (typical microprocessor SPI control bit CPHA = 1). The CSZ pin can remain low between transmissions; however, the device only interprets the first eight bits transmitted after the falling edge of CSZ as a command byte, and the next eight bits as a data byte only if writing to a register. The device is entirely controlled by registers. Reading and writing these registers is accomplished by an 8-bit command sent to the PICO pin prior to the data for that register. Table 6-61 shows the command structure. The first seven bits specify the address of the register that is being written or read, from 0 to 127 (decimal). The command word ends with an R/W bit, which specifies the direction of data flow on the serial bus.

In the case of a register write, set the R/W bit to 0. A second byte of data is sent to the PICO pin and contains the data to be written to the register. A register read is accomplished in a similar fashion. The 8-bit command word sends the 7-bit register address, followed by the R/W bit equal to 1 to signify a register read. The 8-bit register data is then clocked out of the device on the POCI pin during the second eight SCLK clocks in the frame. The device supports sequential SPI addressing for a multiple-byte data write/read transfer until the CSZ pin is pulled high. A multiple-byte data write or read transfer is identical to a single-byte data write or read transfer, respectively, until all data byte transfers complete. The host device must keep the CSZ pin low during all data byte transfers. Figure 6-93 shows the single-byte write transfer and Figure 6-94 shows the single-byte read transfer.

Table 6-61 SPI Command Word
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
ADDR(6) ADDR(5) ADDR(4) ADDR(3) ADDR(2) ADDR(1) ADDR(0) R/WZ
TAC5311-Q1 SPI
                    Single-Byte Write Transfer Figure 6-93 SPI Single-Byte Write Transfer
TAC5311-Q1 SPI
                    Single-Byte Read Transfer Figure 6-94 SPI Single-Byte Read Transfer