SLOS946A May   2016  – December 2016 TAS5722L

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Adjustable I2C Address
      2. 7.3.2 I2C Interface
        1. 7.3.2.1 Writing to the I2C Interface
        2. 7.3.2.2 Reading from the I2C Interface
      3. 7.3.3 Serial Audio Interface (SAIF)
        1. 7.3.3.1 Stereo I2S Format Timing
        2. 7.3.3.2 Stereo Left-Justified Format Timing
        3. 7.3.3.3 Stereo Right-Justified Format Timing
        4. 7.3.3.4 TDM Format Timing
      4. 7.3.4 Audio Signal Path
        1. 7.3.4.1 High-Pass Filter (HPF)
        2. 7.3.4.2 Amplifier Analog Gain and Digital Volume Control
        3. 7.3.4.3 Digital Clipper
        4. 7.3.4.4 Class-D Amplifier Settings
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode (SDZ)
      2. 7.4.2 Sleep Mode
      3. 7.4.3 Mode Timing
      4. 7.4.4 Auto Sleep Mode
      5. 7.4.5 Active Mode
      6. 7.4.6 Mute Mode
      7. 7.4.7 Faults and Status
    5. 7.5 Register Maps
      1. 7.5.1 I2C Register Map Summary
      2. 7.5.2 Register Maps
        1. 7.5.2.1  Device Identification Register (0x00)
        2. 7.5.2.2  Power Control Register (0x01)
        3. 7.5.2.3  Digital Control Register 1 (0x02)
        4. 7.5.2.4  Register Name (offset = ) [reset = ] or (address = ) [reset = ]
        5. 7.5.2.5  Volume Control Register (0x04)
        6. 7.5.2.6  Analog Control Register (0x06)
        7. 7.5.2.7  Fault Configuration and Error Status Register (0x08)
        8. 7.5.2.8  Digital Clipper 2 Register (0x10)
        9. 7.5.2.9  Digital Clipper 1 Register (0x11)
        10. 7.5.2.10 Digital Control Register 3 (0x13)
        11. 7.5.2.11 Analog Control Register 2 (0x14)
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Design Procedure
        1. 8.2.2.1 Overview
        2. 8.2.2.2 Select the PWM Frequency
        3. 8.2.2.3 Select the Amplifier Gain and Digital Volume Control
        4. 8.2.2.4 Select Input Capacitance
        5. 8.2.2.5 Select Decoupling Capacitors
        6. 8.2.2.6 Select Bootstrap Capacitors
      3. 8.2.3 Application Performance Plots
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout

Layout Guidelines

  • Pay special attention to the power stage power supply layout. Each half bridge has two PVDD input pins so that decoupling capacitors can be placed nearby. Use at least a 0.1-µF capacitor of X5R quality or better for each set of inputs.
  • Keep the current circulating loops containing the supply decoupling capacitors, the H-bridges in the device and the connections to the speakers as tight as possible to reduce emissions.
  • Use ground planes to provide the lowest impedance for power and signal current between the device and the decoupling capacitors. The area directly under the device should be treated as a central ground area for the device, and all device grounds must be connected directly to that area.
  • Use a via pattern to connect the area directly under the device to the ground planes in copper layers below the surface. This connection helps to dissipate heat from the device.
  • Avoid interrupting the ground plane with circular traces around the device. Interruption disconnects the copper and interrupt flow of heat and current. Radial copper traces are better to use if necessary.

Layout Example

TAS5722L layout_slos903.gif Figure 54. Layout Example