SLOS782C July   2013  – May  2017 TAS5760L

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Digital I/O Pins
    6. 7.6  Master Clock
    7. 7.7  Serial Audio Port
    8. 7.8  Protection Circuitry
    9. 7.9  Speaker Amplifier in All Modes
    10. 7.10 Speaker Amplifier in Stereo Bridge-Tied Load (BTL) Mode
    11. 7.11 Speaker Amplifier in Mono Parallel Bridge-Tied Load (PBTL) Mode
    12. 7.12 I²C Control Port
    13. 7.13 Typical Idle, Mute, Shutdown, Operational Power Consumption
    14. 7.14 Typical Speaker Amplifier Performance Characteristics (Stereo BTL Mode)
    15. 7.15 Typical Performance Characteristics (Mono PBTL Mode)
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power Supplies
      2. 9.3.2 Speaker Amplifier Audio Signal Path
        1. 9.3.2.1 Serial Audio Port (SAP)
          1. 9.3.2.1.1 I²S Timing
          2. 9.3.2.1.2 Left-Justified
          3. 9.3.2.1.3 Right-Justified
        2. 9.3.2.2 DC Blocking Filter
        3. 9.3.2.3 Digital Boost and Volume Control
        4. 9.3.2.4 Digital Clipper
        5. 9.3.2.5 Closed-Loop Class-D Amplifier
      3. 9.3.3 Speaker Amplifier Protection Suite
        1. 9.3.3.1 Speaker Amplifier Fault Notification (SPK_FAULT Pin)
        2. 9.3.3.2 DC Detect Protection
    4. 9.4 Device Functional Modes
      1. 9.4.1 Hardware Control Mode
        1. 9.4.1.1 Speaker Amplifier Shut Down (SPK_SD Pin)
        2. 9.4.1.2 Serial Audio Port in Hardware Control Mode
        3. 9.4.1.3 Soft Clipper Control (SFT_CLIP Pin)
        4. 9.4.1.4 Speaker Amplifier Switching Frequency Select (FREQ/SDA Pin)
        5. 9.4.1.5 Parallel Bridge Tied Load Mode Select (PBTL/SCL Pin)
        6. 9.4.1.6 Speaker Amplifier Sleep Enable (SPK_SLEEP/ADR Pin)
        7. 9.4.1.7 Speaker Amplifier Gain Select (SPK_GAIN [1:0] Pins)
        8. 9.4.1.8 Considerations for Setting the Speaker Amplifier Gain Structure
          1. 9.4.1.8.1 Recommendations for Setting the Speaker Amplifier Gain Structure in Hardware Control Mode
      2. 9.4.2 Software Control Mode
        1. 9.4.2.1 Speaker Amplifier Shut Down (SPK_SD Pin)
        2. 9.4.2.2 Serial Audio Port Controls
          1. 9.4.2.2.1 Serial Audio Port (SAP) Clocking
        3. 9.4.2.3 Parallel Bridge Tied Load Mode via Software Control
        4. 9.4.2.4 Speaker Amplifier Gain Structure
          1. 9.4.2.4.1 Speaker Amplifier Gain in Software Control Mode
          2. 9.4.2.4.2 Considerations for Setting the Speaker Amplifier Gain Structure
          3. 9.4.2.4.3 Recommendations for Setting the Speaker Amplifier Gain Structure in Software Control Mode
        5. 9.4.2.5 I²C Software Control Port
          1. 9.4.2.5.1 Setting the I²C Device Address
          2. 9.4.2.5.2 General Operation of the I²C Control Port
          3. 9.4.2.5.3 Writing to the I²C Control Port
          4. 9.4.2.5.4 Reading from the I²C Control Port
    5. 9.5 Register Maps
      1. 9.5.1 Control Port Registers - Quick Reference
      2. 9.5.2 Control Port Registers - Detailed Description
        1. 9.5.2.1  Device Identification Register (0x00)
        2. 9.5.2.2  Power Control Register (0x01)
        3. 9.5.2.3  Digital Control Register (0x02)
        4. 9.5.2.4  Volume Control Configuration Register (0x03)
        5. 9.5.2.5  Left Channel Volume Control Register (0x04)
        6. 9.5.2.6  Right Channel Volume Control Register (0x05)
        7. 9.5.2.7  Analog Control Register (0x06)
        8. 9.5.2.8  Reserved Register (0x07)
        9. 9.5.2.9  Fault Configuration and Error Status Register (0x08)
        10. 9.5.2.10 Reserved Controls (9 / 0x09) - (15 / 0x0F)
        11. 9.5.2.11 Digital Clipper Control 2 Register (0x10)
        12. 9.5.2.12 Digital Clipper Control 1 Register (0x11)
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Stereo BTL Using Software Control
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Startup Procedures- Software Control Mode
          2. 10.2.1.2.2 Shutdown Procedures- Software Control Mode
          3. 10.2.1.2.3 Component Selection and Hardware Connections
            1. 10.2.1.2.3.1 I²C Pullup Resistors
            2. 10.2.1.2.3.2 Digital I/O Connectivity
          4. 10.2.1.2.4 Recommended Startup and Shutdown Procedures
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Stereo BTL Using Hardware Control
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Startup Procedures- Hardware Control Mode
          2. 10.2.2.2.2 Shutdown Procedures- Hardware Control Mode
          3. 10.2.2.2.3 Digital I/O Connectivity
        3. 10.2.2.3 Application Curve
      3. 10.2.3 Mono PBTL Using Software Control
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
          1. 10.2.3.2.1 Startup Procedures- Software Control Mode
          2. 10.2.3.2.2 Shutdown Procedures- Software Control Mode
          3. 10.2.3.2.3 Component Selection and Hardware Connections
            1. 10.2.3.2.3.1 I²C Pull-Up Resistors
            2. 10.2.3.2.3.2 Digital I/O Connectivity
        3. 10.2.3.3 Application Curve
      4. 10.2.4 Mono PBTL Using Hardware Control
        1. 10.2.4.1 Design Requirements
        2. 10.2.4.2 Detailed Design Procedure
          1. 10.2.4.2.1 Startup Procedures- Hardware Control Mode
          2. 10.2.4.2.2 Shutdown Procedures- Hardware Control Mode
          3. 10.2.4.2.3 Component Selection and Hardware Connections
          4. 10.2.4.2.4 Digital I/O Connectivity
        3. 10.2.4.3 Application Curve
      5. 10.2.5 Stereo BTL Using Software Control, 32-Pin DAP Package Option
        1. 10.2.5.1 Design Requirements
        2. 10.2.5.2 Detailed Design Procedure
          1. 10.2.5.2.1 Startup Procedures- Software Control Mode
          2. 10.2.5.2.2 Shutdown Procedures- Software Control Mode
          3. 10.2.5.2.3 Component Selection and Hardware Connections
            1. 10.2.5.2.3.1 I²C Pullup Resistors
            2. 10.2.5.2.3.2 Digital I/O Connectivity
          4. 10.2.5.2.4 Recommended Startup and Shutdown Procedures
        3. 10.2.5.3 Application Curve
      6. 10.2.6 Stereo BTL Using Hardware Control, 32-Pin DAP Package Option
        1. 10.2.6.1 Design Requirements
        2. 10.2.6.2 Detailed Design Procedure
          1. 10.2.6.2.1 Startup Procedures- Hardware Control Mode
          2. 10.2.6.2.2 Shutdown Procedures- Hardware Control Mode
          3. 10.2.6.2.3 Digital I/O Connectivity
        3. 10.2.6.3 Application Curve
      7. 10.2.7 Mono PBTL Using Software Control, 32-Pin DAP Package Option
        1. 10.2.7.1 Design Requirements
        2. 10.2.7.2 Detailed Design Procedure
          1. 10.2.7.2.1 Startup Procedures- Software Control Mode
          2. 10.2.7.2.2 Shutdown Procedures- Software Control Mode
          3. 10.2.7.2.3 Component Selection and Hardware Connections
            1. 10.2.7.2.3.1 I²C Pull-Up Resistors
            2. 10.2.7.2.3.2 Digital I/O Connectivity
        3. 10.2.7.3 Application Curve
      8. 10.2.8 Mono PBTL Using Hardware Control, 32-Pin DAP Package Option
        1. 10.2.8.1 Design Requirements
        2. 10.2.8.2 Detailed Design Procedure
          1. 10.2.8.2.1 Startup Procedures- Hardware Control Mode
          2. 10.2.8.2.2 Shutdown Procedures- Hardware Control Mode
          3. 10.2.8.2.3 Component Selection and Hardware Connections
          4. 10.2.8.2.4 Digital I/O Connectivity
        3. 10.2.8.3 Application Curve
  11. 11Power Supply Recommendations
    1. 11.1 DVDD Supply
    2. 11.2 PVDD Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 General Guidelines for Audio Amplifiers
      2. 12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 12.1.3 Optimizing Thermal Performance
        1. 12.1.3.1 Device, Copper, and Component Layout
        2. 12.1.3.2 Stencil Pattern
          1. 12.1.3.2.1 PCB Footprint and Via Arrangement
            1. 12.1.3.2.1.1 Solder Stencil
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Temperature Ambient Operating Temperature, TA –25 85 °C
Ambient Storage Temperature, TS –40 125 °C
Supply Voltage AVDD Supply –0.3 20 V
PVDD Supply –0.3 20 V
DVDD Supply –0.3 4 V
DVDD Referenced Digital Input Voltages Digital Inputs referenced to DVDD supply –0.5 DVDD + 0.5 V
Speaker Amplifier Output Voltage VSPK_OUTxx, measured at the output pin –0.3 22 V
Storage temperature range, Tstg –40 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
TA Ambient Operating Temperature –25 85 °C
AVDD AVDD Supply 4.5 16.5 V
PVDD PVDD Supply 4.5 16.5 V
DVDD DVDD Supply 2.8 3.63 V
VIH(DR) Input Logic HIGH for DVDD Referenced Digital Inputs DVDD V
VIL(DR) Input Logic LOW for DVDD Referenced Digital Inputs 0 V
RSPK (BTL) Minimum Speaker Load in BTL Mode 4 Ω
RSPK (PBTL) Minimum Speaker Load in PBTL Mode 2 Ω

Thermal Information

THERMAL METRIC(1) TAS5760L UNIT
DCA [HTSSOP] DCA [HTSSOP] DAP [HTSSOP] DAP [HTSSOP]
32-PIN(2) 48-PIN(2) 32-PIN(3) 48-PIN(3)
θJA Junction-to-ambient thermal resistance 60.3 30.2 60.3 31.9 °C/W
θJC(top) Junction-to-case (top) thermal resistance 16 14.3 16 16 °C/W
θJB Junction-to-board thermal resistance 12 12.7 12 17 °C/W
ψJT Junction-to-top characterization parameter 0.4 0.6 0.4 0.4 °C/W
ψJB Junction-to-board characterization parameter 11.9 12.7 11.9 16.8 °C/W
θJC(bottom) Junction-to-case (bottom) thermal resistance 0.8 0.7 0.8 0.81 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
JEDEC Standard 2 Layer Board
JEDEC Standard 4 Layer Board

Digital I/O Pins

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH1 Input Logic HIGH threshold for DVDD Referenced Digital Inputs All digital pins 70 %DVDD
VIL1 Input Logic LOW threshold for DVDD Referenced Digital Inputs All digital pins 30 %DVDD
IIH1 Input Logic HIGH Current Level All digital pins 15 µA
IIL1 Input Logic LOW Current Level All digital pins –15 µA
VOH Output Logic HIGH Voltage Level IOH = 2 mA 90 %DVDD
VOL Output Logic LOW Voltage Level IOH = -2 mA 10 %DVDD

Master Clock

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DMCLK Allowable MCLK Duty Cycle 45% 50% 55%
fMCLK MCLK Input Frequency 25 MHz
Supported single-speed MCLK Frequencies Values: 64, 128, 192, 256, 384, and 512 64 512 x fs
Supported double-speed MCLK Frequencies Values: 64, 128, and 256 64 256

Serial Audio Port

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DSCLK Allowable SCLK Duty Cycle 45% 50% 55%
tH_L Time high and low, SCLK, LRCK, SDIN 10 ns
tSU
tHLD
Setup and Hold time. LRCK, SDIN input to SCLK edge Input tRISE ≤ 1 ns, input tFALL ≤ 1 ns 5 ns
Input tRISE ≤ 4 ns, input tFALL ≤ 4 ns 8
Input tRISE ≤ 8 ns, input tFALL ≤ 8 ns 12
tRISE Rise-time SCLK, LRCK, SDIN inputs 8 ns
tFALL Fall-time SCLK, LRCK, SDIN inputs 8 ns
fS Supported Input Sample Rates Sample rates above 48kHz supported by "double speed mode," which is activated through the I²C control port 32 96 kHz
fSCLK Supported SCLK Frequencies Values include: 32, 48, 64 32 64 fS

Protection Circuitry

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OVERTHRES(PVDD) PVDD Overvoltage Error Threshold PVDD Rising 18 V
OVEFTHRES(PVDD) PVDD Overvoltage Error Threshold PVDD Falling 17.3 V
UVEFTHRES(PVDD) PVDD Undervoltage Error (UVE) Threshold PVDD Falling 3.95 V
UVERTHRES(PVDD) PVDD UVE Threshold (PVDD Rising) PVDD Rising 4.15 V
OTETHRES Overtemperature Error (OTE) Threshold 150 °C
OTEHYST Overtemperature Error (OTE) Hysteresis 15 °C
OCETHRES Overcurrent Error (OCE) Threshold for each BTL Output PVDD= 15V, TA = 25 °C 7 A
DCETHRES DC Error (DCE) Threshold PVDD= 12V, TA = 25 °C 2.6 V
TSPK_FAULT Speaker Amplifier Fault Time Out period DC Detect Error 650 ms
OTE or OCP Fault 1.3 s

Speaker Amplifier in All Modes

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
AV00 Speaker Amplifier Gain with SPK_GAIN[1:0] Pins = 00 Hardware Control Mode (Additional gain settings available in Software Control Mode)(1) 25.2 dBV
AV01 Speaker Amplifier Gain with SPK_GAIN[1:0] Pins = 01 Hardware Control Mode (Additional gain settings available in Software Control Mode)(1) 28.6 dBV
AV10 Speaker Amplifier Gain with SPK_GAIN[1:0] Pins = 10 Hardware Control Mode (Additional gain settings available in Software Control Mode)(1) 31 dBV
AV11 Speaker Amplifier Gain with SPK_GAIN[1:0] Pins = 11 (This setting places the device in Software Control Mode) (Set via I²C)
|VOS|(SPK_AMP) Speaker Amplifier DC Offset BTL, Worst case over voltage, gain settings 10 mV
PBTL, Worst case over voltage, gain settings 15 mV
fSPK_AMP(0) Speaker Amplifier Switching Frequency when PWM_FREQ Pin = 0 (Hardware Control Mode. Additional switching rates available in Software Control Mode.) 16 fS
fSPK_AMP(1) Speaker Amplifier Switching Frequency when PWM_FREQ Pin = 1 (Hardware Control Mode. Additional switching rates available in Software Control Mode.) 8 fS
RDS(ON) On Resistance of Output MOSFET (both high-side and low-side) PVDD = 15 V, TA = 25 °C, Die Only 120
PVDD= 15V, TA = 25 °C, Includes: Die, Bond Wires, Leadframe 150
fC –3-dB Corner Frequency of High-Pass Filter fS = 44.1 kHz 3.7 Hz
fS = 48 kHz 4
fS = 88.2 kHz 7.4
fS = 96 kHz 8
The digital boost block contributes +6dB of gain to this value. The audio signal must be kept below -6dB to avoid clipping the digital audio path.

Speaker Amplifier in Stereo Bridge-Tied Load (BTL) Mode

input signal is 1 kHz Sine, specifications are over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICN(SPK) Idle Channel Noise PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, A-Weighted
- 66 - µVrms
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, A-Weighted
- 75 - µVrms
PO(SPK) Maximum Instantaneous Output Power Per. Ch. PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, THD+N = 0.1%,
- 14.2 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, THD+N = 0.1%
- 8 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, THD+N = 0.1%,
- 21.9 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, THD+N = 0.1%
- 12.5 - W
PO(SPK) Maximum Continuous Output Power Per. Ch.(1) PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, THD+N = 0.1%,
- 14 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, THD+N = 0.1%
- 8 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, THD+N = 0.1%,
- 13.25 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, THD+N = 0.1%
- 12.5 - W
SNR(SPK) Signal to Noise Ratio (Referenced to THD+N = 1%) PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, A-Weighted, -60dBFS Input
- 99.7 - dB
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, A-Weighted, -60dBFS Input
- 98.2 - dB
THD+N(SPK) Total Harmonic Distortion and Noise PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, Po = 1 W
- 0.02% -
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, Po = 1 W
- 0.03% -
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, Po = 1 W
- 0.03% -
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, Po = 1 W
- 0.03% -
X-Talk(SPK) Cross-talk (worst case between LtoR and RtoL coupling) PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, Input Signal 250 mVrms, 1kHz Sine
- -92 - dB
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, Input Signal 250 mVrms, 1kHz Sine
- -93 - dB
The continuous power output of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on it by the system around it, such as the PCB configuration and the ambient operating temperature. The performance characteristics listed in this section are achievable on the TAS5760L's EVM, which is representative of the poplular "2 Layers / 1oz Copper" PCB configuration in a size that is representative of the amount of area often provided to the amplifier section of popular consumer audio electronics. As can be seen in the instantaneous power portion of this table, more power can be delivered from the TAS5760L if steps are taken to pull more heat out of the device. For instance, using a board with more layers or adding a small heatsink will result in an increase of continuous power, up to and including the instantaneous power level. This behavior can also been seen in the POUT vs. PVDD plots shown in the typical performance plots section of this data sheet.

Speaker Amplifier in Mono Parallel Bridge-Tied Load (PBTL) Mode

input signal is 1 kHz Sine, specifications are over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ICN Idle Channel Noise PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, A-Weighted
- 69 - µVrms
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, A-Weighted
- 85 - µVrms
PO(SPK) Maximum Instantaneous Output Power PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 2Ω, THD+N = 0.1%,
- 28.6 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, THD+N = 0.1%,
- 15.9 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, THD+N = 0.1%
- 8.4 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 2Ω, THD+N = 0.1%,
- 43.2 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, THD+N = 0.1%,
- 25 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, THD+N = 0.1%
- 13.3 - W
PO(SPK) Maximum Continuous Output Power(1) PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 2Ω, THD+N = 0.1%,
- 30 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, THD+N = 0.1%,
- 15.9 - W
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, THD+N = 0.1%
- 8.4 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 2Ω, THD+N = 0.1%,
- 28.5 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, THD+N = 0.1%,
- 25 - W
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, THD+N = 0.1%
- 13.3 - W
SNR Signal to Noise Ratio (Referenced to THD+N = 1%) PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, A-Weighted, -60dBFS Input
- 100.4 - dB
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, A-Weighted, -60dBFS Input
- 99.5 - dB
THD+N(SPK) Total Harmonic Distortion and Noise PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 2Ω, Po = 1 W
- 0.03% -
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 4Ω, Po = 1 W
- 0.02% -
PVDD = 12 V, SPK_GAIN[1:0] Pins = 00,
RSPK = 8Ω, Po = 1 W
- 0.02% -
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 2Ω, Po = 1 W
- 0.03% -
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 4Ω, Po = 1 W
- 0.02% -
PVDD = 15 V, SPK_GAIN[1:0] Pins = 01,
RSPK = 8Ω, Po = 1 W
- 0.02% -
The continuous power output of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on it by the system around it, such as the PCB configuration and the ambient operating temperature. The performance characteristics listed in this section are achievable on the TAS5760L's EVM, which is representative of the poplular "2 Layers / 1oz Copper" PCB configuration in a size that is representative of the amount of area often provided to the amplifier section of popular consumer audio electronics. As can be seen in the instantaneous power portion of this table, more power can be delivered from the TAS5760L if steps are taken to pull more heat out of the device. For instance, using a board with more layers or adding a small heatsink will result in an increase of continuous power, up to and including the instantaneous power level. This behavior can also been seen in the POUT vs. PVDD plots shown in the typical performance plots section of this data sheet.

I²C Control Port

specifications are over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CL(I²C) Allowable Load Capacitance for Each I²C Line 400 pF
fSCL Support SCL frequency No Wait States 400 kHz
tbuf Bus Free time between STOP and START conditions 1.3 µS
tf(I²C) Rise Time, SCL and SDA 300 ns
th1(I²C) Hold Time, SCL to SDA 0 ns
th2(I²C) Hold Time, START condition to SCL 0.6 µs
tI²C(start) I²C Startup Time 12 mS
tr(I²C) Rise Time, SCL and SDA 300 ns
tsu1(I²C) Setup Time, SDA to SCL 100 ns
tsu2(I²C) Setup Time, SCL to START condition 0.6 µS
tsu3(I²C) Setup Time, SCL to STOP condition 0.6 µS
Tw(H) Required Pulse Duration, SCL HIGH 0.6 µS
Tw(L) Required Pulse Duration, SCL LOW 1.3 µS

Typical Idle, Mute, Shutdown, Operational Power Consumption

input signal is 1 kHz Sine, specifications are over operating free-air temperature range (unless otherwise noted)
VPVDD
[V]
RSPK
[Ω]
SPEAKER AMPLIFIER STATE IPVDD+AVDD
[mA]
IDVDD
[mA]
PDISS
[W]
6 4 fSPK_AMP = 384kHz Idle 23.48 3.73 0.15
8 23.44 3.72 0.15
4 Mute 23.53 3.72 0.15
8 23.46 3.72 0.15
4 Sleep 13.26 0.48 0.08
8 13.27 0.53 0.08
4 Shutdown 0.046 0.04 0
8 0.046 0.03 0
4 fSPK_AMP = 768kHz Idle 30.94 3.71 0.2
8 30.94 3.71 0.2
4 Mute 29.37 3.71 0.19
8 29.39 3.71 0.19
4 Sleep 13.24 0.5 0.08
8 13.23 0.52 0.08
4 Shutdown 0.046 0.03 0
8 0.046 0.03 0
4 fSPK_AMP = 1152kHz Idle 39.39 3.7 0.25
8 39.43 3.7 0.25
4 Mute 36.91 3.7 0.23
8 36.9 3.69 0.23
4 Sleep 13.17 0.53 0.08
8 13.13 0.45 0.08
4 Shutdown 0.046 0.03 0
8 0.046 0.03 0
12 4 fSPK_AMP = 384kHz Idle 32.95 3.74 0.41
8 32.93 3.73 0.41
4 Mute 32.98 3.73 0.41
8 32.97 3.73 0.41
4 Sleep 12.71 0.47 0.15
8 12.75 0.5 0.15
4 Shutdown 0.053 0.04 0
8 0.053 0.04 0
4 fSPK_AMP = 768kHz Idle 44.84 3.73 0.55
8 44.82 3.73 0.55
4 Mute 42.71 3.72 0.52
8 42.66 3.72 0.52
4 Sleep 12.71 0.49 0.15
8 12.73 0.52 0.15
4 Shutdown 0.063 0.03 0
8 0.053 0.03 0
4 fSPK_AMP = 1152kHz Idle 59.3 3.73 0.72
8 59.3 3.73 0.72
4 Mute 55.74 3.72 0.68
8 55.74 3.72 0.68
4 Sleep 12.67 0.49 0.15
8 12.61 0.43 0.15
4 Shutdown 0.053 0.02 0
8 0.053 0.03 0

Typical Speaker Amplifier Performance Characteristics (Stereo BTL Mode)

At TA = 25°C, fSPK_AMP = 384 kHz, input signal is 1 kHz Sine, unless otherwise noted. Filter used for 8 Ω = 22 µH + 0.68 µF, Filter used for 6 Ω = 15 µH + 0.68 µF, Filter used for 4 Ω = 10 µH + 0.68 µF unless otherwise noted.
TAS5760L G001_BTL_384_POvsVDD_SLOS781.png
Thermal Limits are referenced to TAS5760xxEVM Rev D
Figure 1. Output Power vs PVDD
TAS5760L G025_BTL_384_THDvsF_15V_SLOS781.png
PVDD = 12 V, POSPK = 1 W
Figure 3. THD+N vs Frequency
TAS5760L G027_THDN_vs_Po_12V_1000.png
PVDD = 12 V, Both Channels Driven
Figure 5. THD+N vs Output Power
TAS5760L G030_BTL_384_EFFvsPO_15V_8R_SLOS781.png Figure 7. Efficiency vs Output Power
TAS5760L G019_BTL_384_PVDD_PSRRvsF_SLOS781.png Figure 9. PVDD PSRR vs Frequency
TAS5760L G042_BTL_384_Idle_CurrentvsPVDD_Filterless_SLOS781.png Figure 11. Idle Current Draw vs PVDD (Filterless)
TAS5760L G022_BTL_384_Shutdown_CurrentvsPVDD_Filterless_SLOS781.png Figure 13. Shutdown Current Draw vs PVDD (Filterless)
TAS5760L G024_THDvsF_12V.png
PVDD = 12 V, POSPK = 1 W
Figure 2. THD+N vs Frequency
TAS5760L G026_BTL_384_ICNvsVDD_8R_SLOS781.png Figure 4. Idle Channel Noise vs PVDD
TAS5760L G029_BTL_384_THDNvsP0_15V_SLOS781.png
PVDD = 12 V, Both Channels Driven
Figure 6. THD+N vs Output Power
TAS5760L G031_BTL_384_XTALKvsF_15V_4R_SLOS781.png Figure 8. Crosstalk vs Frequency
TAS5760L G020_BTL_384_DVDD_PSRRvsF_SLOS781.png Figure 10. DVDD PSRR vs Frequency
TAS5760L G023_BTL_384_Idle_CurrentvsPVDD_LCFilter_SLOS781.png
With LC Filter as shown on the EVM
Figure 12. Idle Current Draw vs PVDD
At TA = 25°C, fSPK_AMP = 768 kHz, input signal is 1 kHz Sine, unless otherwise noted.
Filter used for 8 Ω = 22 µH + 0.68 µF, Filter used for 6 Ω = 15 µH + 0.68 µF, Filter used for 4 Ω = 10 µH + 0.68 µF unless otherwise noted.
TAS5760L G039_BTL_768_POvsVDD_SLOS781.png
Thermal Limits are referenced to TAS5760xxEVM Rev D
Figure 14. Output Power vs PVDD
TAS5760L G003_BTL_768_THDvsF_15V_SLOS781.png
PVDD = 12 V, POSPK = 1 W
Figure 16. THD+N vs Frequency
TAS5760L G008_SLOS741.png
PVDD = 12 V, Both Channels Driven
Figure 18. THD+N vs Output Power
TAS5760L G014_BTL_768_EFFvsPO_15V_8R_SLOS781.png Figure 20. Efficiency vs Output Power
TAS5760L G019_BTL_384_PVDD_PSRRvsF_SLOS781.png Figure 22. PVDD PSRR vs Frequency
TAS5760L G045_BTL_768_Idle_CurrentvsPVDD_Filterless_SLOS781.png Figure 24. Idle Current Draw vs PVDD (with LC Filter as shown on EVM)
TAS5760L G002_SLOS741.png
PVDD = 12 V, POSPK = 1 W
Figure 15. THD+N vs Frequency
TAS5760L G006_BTL_768_ICNvsVDD_8R_SLOS781.png Figure 17. Idle Channel Noise vs PVDD
TAS5760L G010_BTL_768_THDvsPO_15V_SLOS781.png
PVDD = 12 V, Both Channels Driven
Figure 19. THD+N vs Output Power
TAS5760L G018_BTL_768_XTALKvsF_15V_4R_SLOS781.png Figure 21. Crosstalk vs Frequency
TAS5760L G045_BTL_768_Idle_CurrentvsPVDD_Filterless_SLOS781.png Figure 23. Idle Current Draw vs PVDD (Filterless)
TAS5760L G022_BTL_384_Shutdown_CurrentvsPVDD_Filterless_SLOS781.png Figure 25. Shutdown Current Draw vs PVDD (Filterless)

Typical Performance Characteristics (Mono PBTL Mode)

At TA = 25°C, fSPK_AMP = 384 kHz, input signal is 1 kHz Sine unless otherwise noted.
TAS5760L G032_PBTL_THDvsF_12V.png
PVDD = 12 V, POSPK = 1 W
Figure 26. THD+N vs Frequency
TAS5760L G034_PBTL_384_ICNvsVDD_8R_SLOS781.png Figure 28. Idle Channel Noise vs PVDD
TAS5760L G037_PBTL_384_THDNvsPO_15V_SLOS781.png
PVDD = 12 V with 1 kHz Sine Input
Figure 30. THD+N vs Output Power
TAS5760L G033_PBTL_384_THDvsF_15V_SLOS781.png
PVDD = 12 V, POSPK = 1 W
Figure 27. THD+N vs Frequency
TAS5760L G035_PBTL_THDN_vs_Po_12V_1000.png
PVDD = 12 V with 1 kHz Sine Input
Figure 29. THD+N vs Output Power
TAS5760L G038_PBTL_384_EFFvsPO_12V_15V_4R_SLOS781.png Figure 31. Efficiency vs Output Power
At TA = 25°C, fSPK_AMP = 768 kHz, input signal is 1 kHz Sine unless otherwise noted.
TAS5760L G004_SLOS741.png
PVDD = 12 V, POSPK = 1 W
Figure 32. THD+N vs Frequency
TAS5760L G007_PBTL_768_ICNvsVDD_8R_SLOS781.png Figure 34. Idle Channel Noise vs PVDD
TAS5760L G013_PBTL_768_THDvsPO_15V_SLOS781.png Figure 36. THD+N vs Output Power with PVDD = 12 V
TAS5760L G005_PBTL_768_THDvsF_15V_SLOS781.png
PVDD = 12 V, POSPK = 1 W
Figure 33. THD+N vs Frequency
TAS5760L G011_SLOS741.png Figure 35. THD+N vs Output Power with PVDD = 12 V
TAS5760L G015_PBTL_768_EFFvsPO_12V_15V_4R_SLOS781.png Figure 37. Efficiency vs Output Power