SLASEG8A March   2016  – July 2017 TAS5782M

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 6.1 Internal Pin Configurations
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Power Dissipation Characteristics
    7. 7.7  MCLK Timing
    8. 7.8  Serial Audio Port Timing - Slave Mode
    9. 7.9  Serial Audio Port Timing - Master Mode
    10. 7.10 I2C Bus Timing - Standard
    11. 7.11 I2C Bus Timing - Fast
    12. 7.12 SPK_MUTE Timing
    13. 7.13 Typical Characteristics
      1. 7.13.1 Bridge Tied Load (BTL) Configuration Curves
      2. 7.13.2 Parallel Bridge Tied Load (PBTL) Configuration
  8. Parametric Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power-on-Reset (POR) Function
      2. 9.3.2 Device Clocking
      3. 9.3.3 Serial Audio Port
        1. 9.3.3.1 Clock Master Mode from Audio Rate Master Clock
        2. 9.3.3.2 Clock Master from a Non-Audio Rate Master Clock
        3. 9.3.3.3 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)
        4. 9.3.3.4 Clock Slave Mode with SCLK PLL to Generate Internal Clocks (3-Wire PCM)
          1. 9.3.3.4.1 Clock Generation using the PLL
          2. 9.3.3.4.2 PLL Calculation
            1. 9.3.3.4.2.1 Examples:
        5. 9.3.3.5 Serial Audio Port - Data Formats and Bit Depths
          1. 9.3.3.5.1 Data Formats and Master/Slave Modes of Operation
        6. 9.3.3.6 Input Signal Sensing (Power-Save Mode)
      4. 9.3.4 Enable Device
        1. 9.3.4.1 Example
      5. 9.3.5 Volume Control
        1. 9.3.5.1 DAC Digital Gain Control
          1. 9.3.5.1.1 Emergency Volume Ramp Down
      6. 9.3.6 Adjustable Amplifier Gain and Switching Frequency Selection
      7. 9.3.7 Error Handling and Protection Suite
        1. 9.3.7.1 Device Overtemperature Protection
        2. 9.3.7.2 SPK_OUTxx Overcurrent Protection
        3. 9.3.7.3 DC Offset Protection
        4. 9.3.7.4 Internal VAVDD Undervoltage-Error Protection
        5. 9.3.7.5 Internal VPVDD Undervoltage-Error Protection
        6. 9.3.7.6 Internal VPVDD Overvoltage-Error Protection
        7. 9.3.7.7 External Undervoltage-Error Protection
        8. 9.3.7.8 Internal Clock Error Notification (CLKE)
      8. 9.3.8 GPIO Port and Hardware Control Pins
      9. 9.3.9 I2C Communication Port
        1. 9.3.9.1 Slave Address
        2. 9.3.9.2 Register Address Auto-Increment Mode
        3. 9.3.9.3 Packet Protocol
        4. 9.3.9.4 Write Register
        5. 9.3.9.5 Read Register
        6. 9.3.9.6 DSP Book, Page, and Register Update
          1. 9.3.9.6.1 Book and Page Change
          2. 9.3.9.6.2 Swap Flag
          3. 9.3.9.6.3 Example Use
    4. 9.4 Device Functional Modes
      1. 9.4.1 Serial Audio Port Operating Modes
      2. 9.4.2 Communication Port Operating Modes
      3. 9.4.3 Speaker Amplifier Operating Modes
        1. 9.4.3.1 Stereo Mode
        2. 9.4.3.2 Mono Mode
        3. 9.4.3.3 Master and Slave Mode Clocking for Digital Serial Audio Port
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 External Component Selection Criteria
      2. 10.1.2 Component Selection Impact on Board Layout, Component Placement, and Trace Routing
      3. 10.1.3 Amplifier Output Filtering
      4. 10.1.4 Programming the TAS5782M
        1. 10.1.4.1 Resetting the TAS5782M Registers and Modules
    2. 10.2 Typical Applications
      1. 10.2.1 2.0 (Stereo BTL) System
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Step One: Hardware Integration
          2. 10.2.1.2.2 Step Two: System Level Tuning
          3. 10.2.1.2.3 Step Three: Software Integration
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Mono (PBTL) Systems
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Step One: Hardware Integration
          2. 10.2.2.2.2 Step Two: System Level Tuning
          3. 10.2.2.2.3 Step Three: Software Integration
        3. 10.2.2.3 Application Specific Performance Plots for Mono (PBTL) Systems
      3. 10.2.3 2.1 (Stereo BTL + External Mono Amplifier) Systems
        1. 10.2.3.1 Advanced 2.1 System (Two TAS5782M devices)
        2. 10.2.3.2 Design Requirements
        3. 10.2.3.3 Application Specific Performance Plots for 2.1 (Stereo BTL + External Mono Amplifier) Systems
  11. 11Power Supply Recommendations
    1. 11.1 Power Supplies
      1. 11.1.1 DVDD Supply
      2. 11.1.2 PVDD Supply
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 General Guidelines for Audio Amplifiers
      2. 12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 12.1.3 Optimizing Thermal Performance
        1. 12.1.3.1 Device, Copper, and Component Layout
        2. 12.1.3.2 Stencil Pattern
          1. 12.1.3.2.1 PCB footprint and Via Arrangement
            1. 12.1.3.2.1.1 Solder Stencil
    2. 12.2 Layout Example
      1. 12.2.1 2.0 (Stereo BTL) System
      2. 12.2.2 Mono (PBTL) System
      3. 12.2.3 2.1 (Stereo BTL + Mono PBTL) Systems
  13. 13Register Maps
    1. 13.1 Registers - Page 0
      1. 13.1.1  Register 1 (0x01)
      2. 13.1.2  Register 6 (0x06)
      3. 13.1.3  Register 7 (0x07)
      4. 13.1.4  Register 8 (0x08)
      5. 13.1.5  Register 9 (0x09)
      6. 13.1.6  Register 12 (0x0C)
      7. 13.1.7  Register 13 (0x0D)
      8. 13.1.8  Register 14 (0x0E)
      9. 13.1.9  Register 15 (0x0F)
      10. 13.1.10 Register 16 (0x10)
      11. 13.1.11 Register 17 (0x11)
      12. 13.1.12 Register 18 (0x12)
      13. 13.1.13 Register 20 (0x14)
      14. 13.1.14 Register 21 (0x15)
      15. 13.1.15 Register 22 (0x16)
      16. 13.1.16 Register 23 (0x17)
      17. 13.1.17 Register 24 (0x18)
      18. 13.1.18 Register 27 (0x1B)
      19. 13.1.19 Register 28 (0x1C)
      20. 13.1.20 Register 29 (0x1D)
      21. 13.1.21 Register 30 (0x1E)
      22. 13.1.22 Register 32 (0x20)
      23. 13.1.23 Register 33 (0x21)
      24. 13.1.24 Register 34 (0x22)
      25. 13.1.25 Register 37 (0x25)
      26. 13.1.26 Register 40 (0x28)
      27. 13.1.27 Register 41 (0x29)
      28. 13.1.28 Register 42 (0x2A)
      29. 13.1.29 Register 43 (0x2B)
      30. 13.1.30 Register 44 (0x2C)
      31. 13.1.31 Register 59 (0x3B)
      32. 13.1.32 Register 60 (0x3C)
      33. 13.1.33 Register 61 (0x3D)
      34. 13.1.34 Register 62 (0x3E)
      35. 13.1.35 Register 63 (0x3F)
      36. 13.1.36 Register 64 (0x40)
      37. 13.1.37 Register 65 (0x41)
      38. 13.1.38 Register 67 (0x43)
      39. 13.1.39 Register 68 (0x44)
      40. 13.1.40 Register 69 (0x45)
      41. 13.1.41 Register 70 (0x46)
      42. 13.1.42 Register 71 (0x47)
      43. 13.1.43 Register 72 (0x48)
      44. 13.1.44 Register 73 (0x49)
      45. 13.1.45 Register 74 (0x4A)
      46. 13.1.46 Register 75 (0x4B)
      47. 13.1.47 Register 76 (0x4C)
      48. 13.1.48 Register 78 (0x4E)
      49. 13.1.49 Register 79 (0x4F)
      50. 13.1.50 Register 83 (0x53)
      51. 13.1.51 Register 85 (0x55)
      52. 13.1.52 Register 86 (0x56)
      53. 13.1.53 Register 87 (0x57)
      54. 13.1.54 Register 88 (0x58)
      55. 13.1.55 Register 91 (0x5B)
      56. 13.1.56 Register 92 (0x5C)
      57. 13.1.57 Register 93 (0x5D)
      58. 13.1.58 Register 94 (0x5E)
      59. 13.1.59 Register 95 (0x5F)
      60. 13.1.60 Register 108 (0x6C)
      61. 13.1.61 Register 119 (0x77)
      62. 13.1.62 Register 120 (0x78)
    2. 13.2 Registers - Page 1
      1. 13.2.1 Register 1 (0x01)
      2. 13.2.2 Register 2 (0x02)
      3. 13.2.3 Register 6 (0x06)
      4. 13.2.4 Register 7 (0x07)
      5. 13.2.5 Register 9 (0x09)
  14. 14Device and Documentation Support
    1. 14.1 Device Support
      1. 14.1.1 Device Nomenclature
      2. 14.1.2 Development Support
    2. 14.2 Receiving Notification of Documentation Updates
    3. 14.3 Community Resources
    4. 14.4 Trademarks
    5. 14.5 Electrostatic Discharge Caution
    6. 14.6 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

Free-air room temperature 25°C (unless otherwise noted)(1)
MIN MAX UNIT
DVDD, AVDD, CPVDD Low-voltage digital, analog, charge pump supply –0.3 3.9 V
PVDD PVDD supply –0.3 30 V
VI(AmpCtrl) Input voltage for SPK_GAIN/FREQ and SPK_FAULT pins –0.3 VGVDD + 0.3 V
VI(DigIn) DVDD referenced digital inputs(2) –0.5 VDVDD + 0.5 V
VI(SPK_INxx) Analog input into speaker amplifier –0.3 6.3 V
VI(SPK_OUTxx) Voltage at speaker output pins –0.3 32 V
Ambient operating temperature, TA –25 85 °C
TJ Operating junction temperature, digital die –40 125 °C
Operating junction temperature, power die –40 165 °C
Tstg Storage temperature –40 125 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK, RESET, SCL, SCLK, SDA, SDIN, and SPK_MUTE.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Free-air room temperature 25°C (unless otherwise noted)
MIN NOM MAX UNIT
V(POWER) Power supply inputs DVDD, AVDD, CPVDD 2.9 3.63 V
PVDD 4.5 26.4
RSPK Minimum speaker load BTL Mode 3 Ω
PBTL Mode 2 Ω
VIH(DigIn) Input logic high for DVDD referenced digital inputs(2)(1) 0.9 × VDVDD VDVDD V
VIL(DigIn) Input logic low for DVDD referenced digital inputs(2)(2) VDVDD 0 0.1 × VDVDD V
LOUT Minimum inductor value in LC filter under short-circuit condition 1 4.7 µH
The best practice for driving the input pins of the TAS5782M device is to power the drive circuit or pullup resistor from the same supply which provides the DVDD power supply.
The best practice for driving the input pins of the TAS5782M device low is to pull them down, either actively or through pulldown resistors to the system ground.

Thermal Information

THERMAL METRIC(1) TAS5782M
DCA (TSSOP)
48 PINS
UNIT
JEDEC
STANDARD
2-LAYER PCB
JEDEC
STANDARD
4-LAYER PCB
TAS5782MEVM
4-LAYER PCB
RθJA Junction-to-ambient thermal resistance 41.8 27.6 19.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 14.4 14.4 14.4 °C/W
RθJB Junction-to-board thermal resistance 9.4 9.4 9.4 °C/W
ψJT Junction-to-top characterization parameter 0.6 0.6 2 °C/W
ψJB Junction-to-board characterization parameter 8.1 9.3 4.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 40 kHz brickwall filter. The device output PWM frequency was set to 768 kHz unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL I/O
|IIH|1 Input logic high current level for DVDD referenced digital input pins(2) VIN(DigIn) = VDVDD 10 µA
|IIL|1 Input logic low current level for DVDD referenced digital input pins(2) VIN(DigIn) = 0 V –10 µA
VIH1 Input logic high threshold for DVDD referenced digital inputs(2) 70% VDVDD
VIL1 Input logic low threshold for DVDD referenced digital inputs(2) 30% VDVDD
VOH(DigOut) Output logic high voltage level(2) IOH = 4 mA 80% VDVDD
VOL(DigOut) Output logic low voltage level(2) IOH = –4 mA 22% VDVDD
VOL(SPK_FAULT) Output logic low voltage level for SPK_FAULT With 100-kΩ pullup resistor 0.8 V
GVDD_REG GVDD regulator voltage 7 V
I2C CONTROL PORT
CL(I2C) Allowable load capacitance for each I2C Line 400 pF
fSCL(fast) Support SCL frequency No wait states, fast mode 400 kHz
fSCL(slow) Support SCL frequency No wait states, slow mode 100 kHz
VNH Noise margin at High level for each connected device (including hysteresis) 0.2 × VDD V
MCLK AND PLL SPECIFICATIONS
DMCLK Allowable MCLK duty cycle 40% 60%
fMCLK Supported MCLK frequencies Up to 50 MHz 128 512 fS(1)
fPLL PLL input frequency Clock divider uses fractional divide
D > 0, P = 1
6.7 20 MHz
Clock divider uses integer divide
D = 0, P = 1
1 20
SERIAL AUDIO PORT
tDLY Required LRCK/FS to SCLK rising edge delay 5 ns
DSCLK Allowable SCLK duty cycle 40% 60%
fS Supported input sample rates 8 96 kHz
fSCLK Supported SCLK frequencies 32 64 fS(1)
fSCLK SCLK frequency Either master mode or slave mode 24.576 MHz
SPEAKER AMPLIFIER (ALL OUTPUT CONFIGURATIONS)
AV(SPK_AMP) Speaker amplifier gain SPK_GAIN/FREQ voltage < 3 V,
see Adjustable Amplifier Gain and Switching Frequency Selection
20 dBV
SPK_GAIN/FREQ voltage > 3.3 V,
see Adjustable Amplifier Gain and Switching Frequency Selection
26
ΔAV(SPK_AMP) Typical variation of speaker amplifier gain ±1 dBV
fSPK_AMP Switching frequency of the speaker amplifier Switching frequency depends on voltage presented at SPK_GAIN/FREQ pin and the clocking arrangement, including the incoming sample rate, see Adjustable Amplifier Gain and Switching Frequency Selection 176.4 768 kHz
KSVR Power supply rejection ratio Injected Noise = 50 Hz to 60 Hz, 200 mVP-P, Gain = 26 dB, input audio signal = digital zero 60 dB
rDS(on) Drain-to-source on resistance of the individual output MOSFETs VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C, includes PVDD/PGND pins, leadframe, bondwires and metallization layers. 120
VPVDD = 24 V, I(SPK_OUT) = 500 mA, TJ = 25°C 90
OCETHRES SPK_OUTxx overcurrent error threshold 7.5 A
OTETHRES Overtemperature error threshold 165 °C
OCECLRTIME Time required to clear overcurrent error after error condition is removed. 1.3 s
OTECLRTIME Time required to clear overtemperature error after error condition is removed. 1.3 s
OVETHRES(PVDD) PVDD overvoltage error threshold 27 V
UVETHRES(PVDD) PVDD undervoltage error threshold 4.3 V
SPEAKER AMPLIFIER (STEREO BTL)
|VOS| Amplifier offset voltage Measured differentially with zero input data, SPK_GAIN/FREQ pin configured for 20 dB gain, VPVDD = 12 V 2 mV
Measured differentially with zero input data, SPK_GAIN/FREQ pin configured for 26 dB gain, VPVDD = 24 V 5 15
ICN(SPK) Idle channel noise VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted 49 µVRMS
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted 59
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted 81
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted 82
PO(SPK) Output Power (Per Channel) VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω, THD+N = 0.1% 14 W
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, THD+N = 0.1% 8
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1% 23
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 13
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1% 34
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 20
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1% 40
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 33
SNR Signal-to-noise ratio (referenced to 0 dBFS input signal) VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 103 dB
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 102
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 103
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 105
THD+NSPK Total harmonic distortion and noise VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.021%
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.022%
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.02%
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.037%
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0021%
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.028%
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.027%
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.038%
X-talkSPK Cross-talk (worst case between left-to-right and right-to-left coupling) VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, Input Signal 250 mVrms,
1-kHz Sine, across f(S)
–90 dB
VPVDD = 15 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω, Input Signal 250 mVrms,
1-kHz Sine, across f(S)
–102
VPVDD = 19 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω, Input Signal 250 mVrms,
1-kHz Sine, across f(S)
–93
VPVDD = 24 V, SPK_GAIN = 26 dBV, RSPK = 8 Ω, Input Signal 250 mVrms,
1-kHz Sine, across f(S)
–93
SPEAKER AMPLIFIER (MONO PBTL)
|VOS| Amplifier offset voltage Measured differentially with zero input data, SPK_GAIN/FREQ pin configured for 20 dB gain, VPVDD = 12 V 0.7 mV
Measured differentially with zero input data, SPK_GAIN/FREQ pin configured for 26 dB gain, VPVDD = 24 V 4
ICN Idle channel noise VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted 48 µVRMS
VPVDD = 15 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted 49
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted 83
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted 82
PO Output power (per channel) VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω, THD+N = 0.1%, Unless otherwise noted 30 W
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω, THD+N = 0.1%, Unless otherwise noted 16
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, THD+N = 0.1% 9
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, THD+N = 0.1%, Unless otherwise noted 44
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1%, Unless otherwise noted 22
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 13
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, THD+N = 0.1%, Unless otherwise noted 50
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1%, Unless otherwise noted 36
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 20
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, THD+N = 0.1%, Unless otherwise noted 40
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, THD+N = 0.1%, Unless otherwise noted 61
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, THD+N = 0.1% 34
SNR Signal-to-noise ratio
(referenced to 0 dBFS input signal)
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 105 dB
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 104
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 105
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, A-Weighted, –120 dBFS Input 107
THD+N Total harmonic distortion and noise VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 2 Ω, PO = 1 W, f = 1kHz 0.014%
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.011%
VPVDD = 12 V, SPK_GAIN = 20 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.014%
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, PO = 1 W, f = 1kHz 0.015%
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.013%
VPVDD = 15 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.015%
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, PO = 1 W, f = 1kHz 0.018%
V, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.012%
VPVDD = 19 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.020%
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 2 Ω, PO = 1 W, f = 1kHz 0.028%
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 4 Ω, PO = 1 W, f = 1kHz 0.02%
VPVDD = 24 V, SPK_GAIN = 26 dB, RSPK = 8 Ω, PO = 1 W, f = 1kHz 0.027%
A unit of fS indicates that the specification is the value listed in the table multiplied by the sample rate of the audio used in the TAS5782M device.
DVDD referenced digital pins include: ADR0, ADR1, GPIO0, GPIO2, LRCK/FS, MCLK,RESET, SCL, SCLK, SDA, SDIN, and SPK_MUTE.

Power Dissipation Characteristics

Free-air room temperature 25°C (unless otherwise noted)
VPVDD
(V)
SPK_GAIN(1)(2)(3)
(dBV)
fSPK_AMP
(kHz)
STATE OF
OPERATION
RSPK
(Ω)
IPVDD(4)
(mA)
IDVDD(5)
(mA)
PDISS
(W)
7.4 20 384 Idle 4 21.30 59.70 0.355
6 21.33 59.68 0.355
8 21.30 59.70 0.355
Mute 4 21.33 58.82 0.352
6 21.34 58.81 0.352
8 21.36 58.81 0.352
Standby 4 2.08 12.41 0.056
6 2.11 12.41 0.057
8 2.17 12.41 0.057
Powerdown 4 2.03 0.730 0.017
6 2.04 0.740 0.018
8 2.06 0.740 0.018
768 Idle 4 27.48 59.7 0.400
6 27.49 59.73 0.401
8 24.46 59.72 0.378
Mute 4 27.50 58.8 0.398
6 27.51 58.8 0.398
8 27.52 58.81 0.398
Standby 4 2.04 12.41 0.056
6 2.08 12.41 0.056
8 2.11 12.41 0.057
Powerdown 4 2.06 0.73 0.018
6 2.07 0.74 0.018
8 2.08 0.74 0.018
11.1 20 384 Idle 4 24.33 59.74 0.467
6 24.32 59.74 0.467
8 24.36 59.70 0.467
Mute 4 24.36 58.81 0.464
6 24.32 58.82 0.464
8 24.37 58.84 0.465
Standby 4 3.58 12.40 0.081
6 3.57 12.41 0.081
8 3.58 12.42 0.081
Powerdown 4 3.52 0.74 0.042
6 3.52 0.74 0.042
8 3.54 0.74 0.042
768 Idle 4 30.70 59.70 0.538
6 30.65 59.72 0.537
8 30.67 59.71 0.537
Mute 4 3.072 58.80 0.528
6 30.69 58.81 0.535
8 30.69 58.81 0.535
Standby 4 3.54 12.40 0.080
6 3.54 12.41 0.080
8 3.58 12.42 0.081
Powerdown 4 3.53 0.74 0.042
6 3.53 0.74 0.042
8 3.55 0.74 0.042
12 20 384 Idle 4 25.07 59.72 0.498
6 25.08 59.73 0.498
8 25.10 59.71 0.498
Mute 4 25.12 58.84 0.496
6 25.08 58.82 0.495
8 25.11 58.82 0.495
Standby 4 3.92 12.40 0.088
6 3.93 12.41 0.088
8 3.94 12.41 0.088
Powerdown 4 3.87 0.75 0.049
6 3.85 0.74 0.049
8 3.87 0.75 0.049
768 Idle 4 31.31 59.72 0.573
6 31.29 59.71 0.573
8 31.31 59.74 0.573
Mute 4 31.31 58.80 0.570
6 31.33 58.81 0.570
8 31.32 58.81 0.570
Standby 4 3.88 12.40 0.087
6 3.90 12.41 0.088
8 3.91 12.41 0.088
Powerdown 4 3.89 0.75 0.049
6 3.91 0.74 0.049
8 3.88 0.75 0.049
15 26 384 Idle 4 27.94 59.73 0.616
6 27.91 59.75 0.616
8 27.75 59.69 0.613
Mute 4 27.98 58.84 0.614
6 27.94 58.87 0.613
8 27.88 58.85 0.612
Standby 4 5.09 12.41 0.117
6 5.12 12.41 0.118
8 5.19 12.41 0.119
Powerdown 4 5.02 0.74 0.078
6 5.06 0.74 0.078
8 5.14 0.74 0.080
768 Idle 4 33.05 59.7 0.693
6 33.03 59.72 0.693
8 33.08 59.68 0.693
Mute 4 33.03 58.81 0.690
6 33.04 58.81 0.690
8 33.05 58.80 0.690
Standby 4 5.07 12.41 0.117
6 5.09 12.41 0.117
8 5.14 12.41 0.118
Powerdown 4 5.02 0.74 0.078
6 5.04 0.74 0.078
8 5.09 0.74 0.079
19.6 26 384 Idle 4 32.27 59.77 0.830
6 32.19 59.76 0.828
8 32.08 59.75 0.826
Mute 4 32.27 58.85 0.827
6 32.24 58.87 0.826
8 32.22 58.86 0.826
Standby 4 6.95 12.40 0.177
6 6.93 12.42 0.177
8 7.00 12.41 0.178
Powerdown 4 6.89 0.74 0.137
6 6.90 0.74 0.138
8 6.96 0.73 0.139
768 Idle 4 34.99 59.74 0.883
6 34.95 59.74 0.882
8 34.97 59.71 0.882
Mute 4 34.96 58.85 0.879
6 34.98 58.83 0.880
8 34.96 58.81 0.879
Standby 4 6.93 12.40 0.177
6 6.93 12.42 0.177
8 6.98 12.41 0.178
Powerdown 4 6.84 0.74 0.137
6 6.89 0.74 0.137
8 6.90 0.73 0.138
24 26 384 Idle 4 36.93 59.80 1.084
6 36.87 59.81 1.082
8 36.77 59.76 1.080
Mute 4 36.94 58.91 1.081
6 36.89 58.89 1.080
8 36.85 58.90 1.079
Standby 4 8.73 12.40 0.250
6 8.72 12.40 0.250
8 8.71 12.40 0.250
Powerdown 4 8.64 0.74 0.210
6 8.66 0.74 0.210
8 8.69 0.73 0.211
768 Idle 4 36.84 59.73 1.081
6 36.86 59.76 1.082
8 36.83 59.78 1.081
Mute 4 36.85 58.85 1.079
6 36.84 58.84 1.078
8 36.82 58.83 1.078
Standby 4 8.66 12.40 0.249
6 8.68 12.40 0.249
8 8.71 12.40 0.250
Powerdown 4 8.63 0.74 0.210
6 8.64 0.74 0.210
8 8.65 0.73 0.210
Mute: B0-P0-R3-D0,D4 = 1
Standby: B0-P0-R2-D4 = 1
Power down: B0-P0-R2-D0 = 1
IPVDD refers to all current that flows through the PVDD supply for the DUT. Any other current sinks not directly related to the DUT current draw were removed.
IDVDD refers to all current that flows through the DVDD (3.3-V) supply for the DUT. Any other current sinks not directly related to the DUT current draw were removed.

MCLK Timing

See Figure 18.
MIN NOM MAX UNIT
tMCLK MCLK period 20 1000 ns
tMCLKH MCLK pulse width, high 9 ns
tMCLKL MCLK pulse width, low 9 ns

Serial Audio Port Timing – Slave Mode

See Figure 19.
MIN NOM MAX UNIT
fSCLK SCLK frequency 1.024 MHz
tSCLK SCLK period 40 ns
tSCLKL SCLK pulse width, low 16 ns
tSCLKH SCLK pulse width, high 16 ns
tSL SCLK rising to LRCK/FS edge 8 ns
tLS LRCK/FS Edge to SCLK rising edge 8 ns
tSU Data setup time, before SCLK rising edge 8 ns
tDH Data hold time, after SCLK rising edge 8 ns
tDFS Data delay time from SCLK falling edge 15 ns

Serial Audio Port Timing – Master Mode

See Figure 20.
MIN NOM MAX UNIT
tSCLK SCLK period 40 ns
tSCLKL SCLK pulse width, low 16 ns
tSCLKH SCLK pulse width, high 16 ns
tLRD LRCK/FS delay time from to SCLK falling edge –10 20 ns
tSU Data setup time, before SCLK rising edge 8 ns
tDH Data hold time, after SCLK rising edge 8 ns
tDFS Data delay time from SCLK falling edge 15 ns

I2C Bus Timing – Standard

MIN MAX UNIT
fSCL SCL clock frequency 100 kHz
tBUF Bus free time between a STOP and START condition 4.7 µs
tLOW Low period of the SCL clock 4.7 µs
tHI High period of the SCL clock 4 µs
tRS-SU Setup time for (repeated) START condition 4.7 µs
tS-HD Hold time for (repeated) START condition 4 µs
tD-SU Data setup time 250 ns
tD-HD Data hold time 0 900 ns
tSCL-R Rise time of SCL signal 20 + 0.1CB 1000 ns
tSCL-R1 Rise time of SCL signal after a repeated START condition and after an acknowledge bit 20 + 0.1CB 1000 ns
tSCL-F Fall time of SCL signal 20 + 0.1CB 1000 ns
tSDA-R Rise time of SDA signal 20 + 0.1CB 1000 ns
tSDA-F Fall time of SDA signal 20 + 0.1CB 1000 ns
tP-SU Setup time for STOP condition 4 µs

I2C Bus Timing – Fast

See Figure 21.
MIN MAX UNIT
fSCL SCL clock frequency 400 kHz
tBUF Bus free time between a STOP and START condition 1.3 µs
tLOW Low period of the SCL clock 1.3 µs
tHI High period of the SCL clock 600 ns
tRS-SU Setup time for (repeated)START condition 600 ns
tRS-HD Hold time for (repeated)START condition 600 ns
tD-SU Data setup time 100 ns
tD-HD Data hold time 0 900 ns
tSCL-R Rise time of SCL signal 20 + 0.1CB 300 ns
tSCL-R1 Rise time of SCL signal after a repeated START condition and after an acknowledge bit 20 + 0.1CB 300 ns
tSCL-F Fall time of SCL signal 20 + 0.1CB 300 ns
tSDA-R Rise time of SDA signal 20 + 0.1CB 300 ns
tSDA-F Fall time of SDA signal 20 + 0.1CB 300 ns
tP-SU Setup time for STOP condition 600 ns
tSP Pulse width of spike suppressed 50 ns

SPK_MUTE Timing

See Figure 22.
MIN MAX UNIT
tr Rise time 20 ns
tf Fall time 20 ns
TAS5782M mlck_timing_diagram_slas988.gif Figure 18. Timing Requirements for MCLK Input
TAS5782M td_pcm_aud_slv_slas988.gif Figure 19. Serial Audio Port Timing in Slave Mode
TAS5782M td_pcm_aud_mstr_slas988.gif Figure 20. Serial Audio Port Timing in Master Mode
TAS5782M td_reg_rd_slas988.gif Figure 21. I2C Communication Port Timing Diagram
TAS5782M td_xsmt_soft_mute_slas988.gif Figure 22. SPK_MUTE Timing Diagram for Soft Mute Operation via Hardware Pin

Typical Characteristics

All performance plots were taken using the TAS5782MEVM Board at room temperature, unless otherwise noted. The term "traditional LC filter" refers to the output filter that is present by default on the TAS5782MEVM Board.

Table 1. Quick Reference Table

OUTPUT
CONFIGURATIONS
PLOT TITLE FIGURE NUMBER
Bridge Tied Load (BTL) Configuration Curves Frequency Response Figure 42
Output Power vs PVDD Figure 23
THD+N vs Frequency, VPVDD = 12 V Figure 24
THD+N vs Frequency, VPVDD = 15 V Figure 25
THD+N vs Frequency, VPVDD = 18 V Figure 26
THD+N vs Frequency, VPVDD = 24 V Figure 27
THD+N vs Power, VPVDD = 12 V Figure 28
THD+N vs Power, VPVDD = 15 V Figure 29
THD+N vs Power, VPVDD = 18 V Figure 30
THD+N vs Power, VPVDD = 24 V Figure 31
Idle Channel Noise vs PVDD Figure 32
Efficiency vs Output Power Figure 33
Efficiency vs Output Power Figure 34
Efficiency vs Output Power Figure 35
Idle Current Draw (Filterless) vs PVDD Figure 36
Crosstalk vs. Frequency Figure 37
PVDD PSRR vs Frequency Figure 38
DVDD PSRR vs Frequency Figure 39
AVDD PSRR vs Frequency Figure 40
CPVDD PSRR vs Frequency Figure 41
THD+N vs Frequency, VPVDD = 12 V Figure 43
THD+N vs Frequency, VPVDD = 15 V Figure 44
THD+N vs Frequency, VPVDD = 18 V Figure 45
THD+N vs Frequency, VPVDD = 24 V Figure 46
Parallel Bridge Tied Load (PBTL) Configuration Output Power vs PVDD Figure 47
THD+N vs Frequency, VPVDD = 12 V Figure 48
THD+N vs Frequency, VPVDD = 15 V Figure 49
THD+N vs Frequency, VPVDD = 18 V Figure 50
THD+N vs Frequency, VPVDD = 24 V Figure 51
THD+N vs Power, VPVDD = 12 V Figure 52
THD+N vs Power, VPVDD = 15 V Figure 53
THD+N vs Power, VPVDD = 18 V Figure 54
THD+N vs Power, VPVDD = 24 V Figure 55
Idle Channel Noise vs PVDD Figure 56
Efficiency vs Output Power Figure 57
THD+N vs Frequency, VPVDD = 12 V Figure 60
THD+N vs Frequency, VPVDD = 15 V Figure 61
THD+N vs Frequency, VPVDD = 18 V Figure 62
THD+N vs Frequency, VPVDD = 24 V Figure 63

Bridge Tied Load (BTL) Configuration Curves

Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5782MEVM board and Audio Precision System 2722 with Analog Analyzer filter set to 40-kHz brickwall filter. All measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, unless otherwise noted. For both the BTL plots and the PBTL plots, the LC filter used was 4.7 µH / 0.68 µF. Return to Quick Reference Table.

TAS5782M D002_SLASED7.gif
AV(SPK_AMP) = 26 dBV
Figure 23. Output Power vs PVDD – BTL
TAS5782M D004_SLASEG8.gif
AV(SPK_AMP) = 20 dBV PO = 1 W VPVDD = 15 V
Figure 25. THD+N vs Frequency – BTL
TAS5782M D003_SLASEG8.gif
AV(SPK_AMP) = 20 dBV PO = 1 W VPVDD = 12 V
Figure 24. THD+N vs Frequency – BTL
TAS5782M D005_SLASEG8.gif
AV(SPK_AMP) = 26 dBV PO = 1 W VPVDD = 18 V
Figure 26. THD+N vs Frequency – BTL
TAS5782M D006_SLASEG8.gif
AV(SPK_AMP) = 26 dBV PO = 1 W VPVDD = 24 V
Figure 27. THD+N vs Frequency – BTL
TAS5782M D008_SLASED7.gif
AV(SPK_AMP) = 20 dBV VPVDD = 15 V
Figure 29. THD+N vs Power – BTL
TAS5782M D010_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V
Figure 31. THD+N vs Power – BTL
TAS5782M D012_SLASED7.gif
RSPK = 4 Ω
Figure 33. Efficiency vs Output Power – BTL
TAS5782M D014_SLASED7.gif
RSPK = 8 Ω
Figure 35. Efficiency vs Output Power – BTL
TAS5782M D016_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V
Figure 37. Crosstalk vs Frequency – BTL
TAS5782M D018_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V
VDVDD = 3.3 V + 250 mVac
Figure 39. DVDD PSRR vs Frequency – BTL
TAS5782M D020_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V
VCPVDD = 3.3 V + 250 mVac
Figure 41. CPVDD PSRR vs Frequency – BTL
TAS5782M D035_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 12 V
Figure 43. THD vs Frequency – BTL
TAS5782M D037_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 18 V
Figure 45. THD vs Frequency – BTL
TAS5782M D007_SLASED7.gif
AV(SPK_AMP) = 20 dBV VPVDD = 12 V
Figure 28. THD+N vs Power – BTL
TAS5782M D009_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 18 V
Figure 30. THD+N vs Power – BTL
TAS5782M D011_SLASED7.gif
RSPK = 4 Ω
Figure 32. Idle Channel Noise vs PVDD – BTL
TAS5782M D013_SLASED7.gif
RSPK = 6 Ω
Figure 34. Efficiency vs Output Power – BTL
TAS5782M D015_SLASED7.gif
fSPK_AMP = 768 kHz RSPK = 8 Ω
Figure 36. Idle Current Draw (Filterless) vs VPVDD – BTL
TAS5782M D017_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V + 250 mVac
Figure 38. PVDD PSRR vs Frequency – BTL
TAS5782M D019_SLASED7.gif
AV(SPK_AMP) = 26 dBV VPVDD = 24 V
VAVDD = 3.3 V + 250 mVac
Figure 40. AVDD PSRR vs Frequency – BTL
TAS5782M D001_SLASED7.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 12 V
Figure 42. Gain vs Frequency – BTL
TAS5782M D036_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 15 V
Figure 44. THD vs Frequency - BTL
TAS5782M D038_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 24 V
Figure 46. THD vs Frequency – BTL

Parallel Bridge Tied Load (PBTL) Configuration

Return to Quick Reference Table.

TAS5782M D021_SLASED7.gif
AV(SPK_AMP) = 26 dBV
Figure 47. Output Power vs PVDD – PBTL
TAS5782M D023_SLASED7.gif
AV(SPK_AMP) = 20 dBV PO = 1 W VPVDD = 15 V
Figure 49. THD+N vs Frequency – PBTL
TAS5782M D025_SLASED7.gif
AV(SPK_AMP) = 26 dBV PO = 1 W VPVDD = 24 V
Figure 51. THD+N vs Frequency – PBTL
TAS5782M D027_SLASED7.gif
AV(SPK_AMP) = 20 dBV
VPVDD = 15 V
Figure 53. THD+N vs Power – PBTL
TAS5782M D029_SLASED7.gif
AV(SPK_AMP) = 20 dBV
VPVDD = 24 V
Figure 55. THD+N vs Power – PBTL
TAS5782M D031_SLASED7.gif
AV(SPK_AMP) = 26 dBV RSPK = 2 Ω
Figure 57. Efficiency vs Output Power – PBTL
TAS5782M D033_SLASED7.gif
AV(SPK_AMP) = 20 dBV RSPK = 4 Ω
Figure 59. Efficiency vs Output Power
TAS5782M D040_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 15 V
Figure 61. THD vs Frequency – PBTL
TAS5782M D042_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 24 V
Figure 63. THD vs Frequency – PBTL
TAS5782M D022_SLASED7.gif
AV(SPK_AMP) = 20 dBV PO = 1 W VPVDD = 12 V
Figure 48. THD+N vs Frequency – PBTL
TAS5782M D024_SLASED7.gif
AV(SPK_AMP) = 26 dBV PO = 1 W VPVDD = 18 V
Figure 50. THD+N vs Frequency – PBTL
TAS5782M D026_SLASED7.gif
AV(SPK_AMP) = 20 dBV VPVDD = 12 V
Figure 52. THD+N vs Power – PBTL
TAS5782M D028_SLASED7.gif
AV(SPK_AMP) = 26 dBV
VPVDD = 18 V
Figure 54. THD+N vs Power – PBTL
TAS5782M D030_SLASED7.gif
RSPK = 4 Ω
Figure 56. Idle Channel Noise vs PVDD – PBTL
TAS5782M D032_SLASED7.gif
AV(SPK_AMP) = 20 dBV RSPK = 3 Ω
Figure 58. Efficiency vs Output Power
TAS5782M D039_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 12 V
Figure 60. THD vs Frequency – PBTL
TAS5782M D041_SLASEG8.gif
AV(SPK_AMP) = 20 dB POUT = 1 W PVDD = 18 V
Figure 62. THD vs Frequency – PBTL