SLLSEV0G November   2017  – December 2024 TCAN1043-Q1 , TCAN1043G-Q1 , TCAN1043H-Q1 , TCAN1043HG-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Dissipation Ratings
    7. 6.7 Electrical Characteristics
    8. 6.8 Switching Characteristics
    9. 6.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Internal and External Indicator Flags (nFAULT and RXD)
      2. 8.3.2 Power-Up Flag (PWRON)
      3. 8.3.3 Wake-Up Request Flag (WAKERQ)
      4. 8.3.4 Wake-Up Source Recognition Flag (WAKESR)
      5. 8.3.5 Undervoltage Fault Flags
        1. 8.3.5.1 Undervoltage on VCC Fault
        2. 8.3.5.2 Undervoltage on VIO Fault
        3. 8.3.5.3 Undervoltage on VSUP Fault
      6. 8.3.6 CAN Bus Failure Fault Flag
      7. 8.3.7 Local Faults
        1. 8.3.7.1 TXD Dominant Timeout (TXD DTO)
        2. 8.3.7.2 TXD Shorted to RXD Fault
        3. 8.3.7.3 CAN Bus Dominant Fault
        4. 8.3.7.4 Thermal Shutdown (TSD)
        5. 8.3.7.5 RXD Recessive Fault
        6. 8.3.7.6 Undervoltage Lockout (UVLO)
        7. 8.3.7.7 Unpowered Device
        8. 8.3.7.8 Floating Terminals
        9. 8.3.7.9 CAN Bus Short Circuit Current Limiting
    4. 8.4 Device Functional Modes
      1. 8.4.1 CAN Bus States
      2. 8.4.2 Normal Mode
      3. 8.4.3 Silent Mode
      4. 8.4.4 Standby Mode
      5. 8.4.5 Go-to-Sleep Mode
      6. 8.4.6 Sleep Mode with Remote Wake and Local Wake Up Requests
        1. 8.4.6.1 Remote Wake Request via Wake Up Pattern (WUP)
        2. 8.4.6.2 Local Wake Up (LWU) via WAKE Input Terminal
      7. 8.4.7 Driver and Receiver Function Tables
      8. 8.4.8 Digital Inputs and Outputs
      9. 8.4.9 INH (Inhibit) Output
  10. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Bus Loading, Length and Number of Nodes
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1 CAN Termination
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • DMT|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Undervoltage Lockout (UVLO)

The supply terminals have under voltage detection which puts the device in protected mode if one of the supply rails drop below the threshold voltage. This protects the bus and system during an under voltage event on either VSUP, VCC or VIO supply terminals. These faults are internal fault flags and are not indicated via the nFAULT terminal.

During an undervoltage event on VCC or VIO the device goes into protected mode and the driver is disabled. After the UV timer expires, the device transitions into sleep mode and the INH pin goes into a high impedance state. In the event of a UV on VIO where the mode pins are no longer driven, the device transitions into standby mode (due to internal fail safe biasing on the NSTB and EN pins) until the UV timer expires and the device transitions into sleep mode.

The VCC and VIO undervoltage detection circuits share the same timer. Therefore, if an undervoltage on one supply occurs and the timers starts, and then during the undervoltage the other supply has an undervoltage event before the first supply recovers the timer does not reset.

Once an under voltage condition is cleared and the supplies have returned to valid levels the device typically needs 200µs to transition to normal operation.