SLLSFJ3D August 2023 – October 2024 TCAN1044A-Q1
PRODUCTION DATA
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
Driver Electrical Characteristics | |||||||
VO(DOM) | Dominant output voltage Normal mode |
CANH | STB = 0 V, TXD = 0 V 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open See Figure 7-2 and Figure 8-3 |
2.75 | 4.5 | V | |
CANL | 0.5 | 2.25 | V | ||||
VO(REC) | Recessive output voltage Normal mode |
CANH and CANL | STB = 0 V, TXD = VIO
RL = open (no load), RCM = open See Figure 7-2 and Figure 8-3 |
2 | 0.5 VCC | 3 | V |
VSYM | Driver symmetry (VO(CANH) + VO(CANL))/VCC |
STB = 0 V, TXD = 250 kHz, 1 MHz, 2.5 MHz RL = 60 Ω, CSPLIT = 4.7 nF, CL = open, RCM = open See Figure 7-2 and Figure 9-2 |
0.9 | 1.1 | V/V | ||
VSYM_DC | DC output symmetry (VCC - VO(CANH) - VO(CANL)) |
STB = 0 V RL = 60 Ω, CL = open See Figure 7-2 and Figure 8-3 |
–400 | 400 | mV | ||
VOD(DOM) | Differential output voltage Normal mode Dominant |
CANH - CANL | STB = 0 V, TXD = 0 V 50 Ω ≤ RL ≤ 65 Ω, CL = open See Figure 7-2 and Figure 8-3 |
1.5 | 3 | V | |
STB = 0 V, TXD = 0 V 45 Ω ≤ RL ≤ 70 Ω, CL = open See Figure 7-2 and Figure 8-3 |
1.4 | 3.3 | V | ||||
STB = 0 V, TXD = 0 V RL = 2240 Ω, CL = open See Figure 7-2 and Figure 8-3 |
1.5 | 5 | V | ||||
VOD(REC) | Differential output voltage Normal mode Recessive |
CANH - CANL | STB = 0 V, TXD = VIO
RL = 60 Ω, CL = open See Figure 7-2 and Figure 8-3 |
–120 | 12 | mV | |
STB = 0 V, TXD = VIO
RL = open, CL = open See Figure 7-2 and Figure 8-3 |
–50 | 50 | mV | ||||
VO(STB) | Bus output voltage Standby mode |
CANH | STB = VIO
RL = open See Figure 7-2 and Figure 8-3 |
-0.1 | 0.1 | V | |
CANL | -0.1 | 0.1 | V | ||||
CANH - CANL | -0.2 | 0.2 | V | ||||
IOS(SS_DOM) | Short-circuit steady-state output current, dominant Normal mode |
STB = 0 V, TXD = 0 V V(CANH) = -15 V to 40 V, CANL = open See Figure 7-7 and Figure 8-3 |
–115 | mA | |||
STB = 0 V, TXD = 0 V V(CAN_L) = -15 V to 40 V, CANH = open See Figure 7-7 and Figure 8-3 |
115 | mA | |||||
IOS(SS_REC) | Short-circuit steady-state output current, recessive Normal mode |
STB = 0 V, TXD = VIO
–27 V ≤ VBUS ≤ 32 V, where VBUS = CANH = CANL See Figure 7-7 and Figure 8-3 |
–5 | 5 | mA | ||
Receiver Electrical Characteristics | |||||||
VIT | Input threshold voltage Normal mode |
STB = 0 V -12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
500 | 900 | mV | ||
VIT(STB) | Input threshold Standby mode |
STB = VIO
-12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
400 | 1150 | mV | ||
VDOM | Dominant state differential input voltage range Normal mode |
STB = 0 V -12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
0.9 | 9 | V | ||
VREC | Recessive state differential input voltage range Normal mode |
STB = 0 V -12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
-4 | 0.5 | V | ||
VDOM(STB) | Dominant state differential input voltage range Standby mode |
STB = VIO
-12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
1.15 | 9 | V | ||
VREC(STB) | Recessive state differential input voltage range Standby mode |
STB = VIO
-12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
-4 | 0.4 | V | ||
VHYS | Hysteresis voltage for input threshold Normal mode |
STB = 0 V -12 V ≤ VCM ≤ 12 V See Figure 7-3 and Table 8-6 |
115 | mV | |||
VCM | Common-mode range Normal and standby modes |
See Figure 7-3 and Table 8-6 | –12 | 12 | V | ||
ILKG(IOFF) | Unpowered bus input leakage current | CANH = CANL = 5 V, VCC = VIO = GND | 5 | µA | |||
CI | Input capacitance to ground (CANH or CANL) | TXD = VIO (1) | 20 | pF | |||
CID | Differential input capacitance | 10 | pF | ||||
RID | Differential input resistance | STB = 0 V, TXD = VIO
(1)
-12 V ≤ VCM ≤ 12 V |
40 | 90 | kΩ | ||
RIN | Single-ended input resistance (CANH or CANL) |
20 | 45 | kΩ | |||
RIN(M) | Input resistance matching [1 – (RIN(CANH) / RIN(CANL))] × 100 % |
V(CAN_H) = V(CAN_L) = 5 V | –1 | 1 | % | ||
TXD Terminal (CAN Transmit Data Input) | |||||||
VIH | High-level input voltage | Devices without VIO | 0.7 VCC | V | |||
VIH | High-level input voltage | Devices with VIO | 0.7 VIO | V | |||
VIL | Low-level input voltage | Devices without VIO | 0.3 VCC | V | |||
VIL | Low-level input voltage | Devices with VIO | 0.3 VIO | V | |||
IIH | High-level input leakage current | TXD = VCC = VIO = 5.5 V | –2.5 | 0 | 1 | µA | |
IIL | Low-level input leakage current | TXD = 0 V VCC= VIO = 5.5 V |
–200 | -100 | –20 | µA | |
ILKG(OFF) | Unpowered leakage current | TXD = 5.5 V VCC= VIO = 0 V |
–1 | 0 | 1 | µA | |
CI | Input capacitance | VIN = 0.4×sin(2×π×2×106×t)+2.5 V | 5 | pF | |||
RXD Terminal (CAN Receive Data Output) | |||||||
VOH | High-level output voltage | IO = –2 mA Devices without VIO See Figure 7-3 |
0.8 VCC | V | |||
VOH | High-level output voltage | IO = –1.5 mA Devices with VIO See Figure 7-3 |
0.8 VIO | V | |||
VOL | Low-level output voltage | IO = 2 mA Devices without VIO See Figure 7-3 |
0.2 VCC | V | |||
VOL | Low-level output voltage | IO = 1.5mA Devices with VIO See Figure 7-3 |
0.2 VIO | V | |||
ILKG(OFF) | Unpowered leakage current | RXD = 5.5 V VCC = VIO = 0 V |
–1 | 0 | 1 | µA | |
STB Terminal (Standby Mode Input) | |||||||
VIH | High-level input voltage | Devices without VIO | 0.7 VCC | V | |||
VIH | High-level input voltage | Devices with VIO | 0.7 VIO | V | |||
VIL | Low-level input voltage | Devices without VIO | 0.3 VCC | V | |||
VIL | Low-level input voltage | Devices with VIO | 0.3 VIO | V | |||
IIH | High-level input leakage current | VCC = VIO = STB = 5.5 V | –2 | 2 | µA | ||
IIL | Low-level input leakage current | STB = 0 V VCC = VIO = 5.5 V, |
–20 | –2 | µA | ||
ILKG(OFF) | Unpowered leakage current | STB = 5.5V VCC = VIO = 0 V |
–1 | 0 | 1 | µA |