SLLSFJ3D August   2023  – October 2024 TCAN1044A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  ESD Ratings - IEC Specifications
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Characteristics
    6. 6.6  Supply Characteristics
    7. 6.7  Dissipation Ratings
    8. 6.8  Electrical Characteristics
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Pin Description
        1. 8.3.1.1 TXD
        2. 8.3.1.2 GND
        3. 8.3.1.3 VCC
        4. 8.3.1.4 RXD
        5. 8.3.1.5 VIO
        6. 8.3.1.6 CANH and CANL
        7. 8.3.1.7 STB (Standby)
      2. 8.3.2 CAN Bus States
      3. 8.3.3 TXD Dominant Timeout (DTO)
      4. 8.3.4 CAN Bus short-circuit current limiting
      5. 8.3.5 Thermal Shutdown (TSD)
      6. 8.3.6 Undervoltage Lockout
      7. 8.3.7 Unpowered Device
      8. 8.3.8 Floating pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operating Modes
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
        1. 8.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 8.4.4 Driver and Receiver Function
  10. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 CAN Termination
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1 Bus Loading, Length and Number of Nodes
    3. 9.3 System Examples
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

Over recommended operating conditions with TJ = -40℃ to 150℃ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Driver Electrical Characteristics
VO(DOM) Dominant output voltage
Normal mode
CANH STB = 0 V, TXD = 0 V
50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open
See Figure 7-2 and Figure 8-3
2.75 4.5 V
CANL 0.5 2.25 V
VO(REC) Recessive output voltage
Normal mode
CANH and CANL STB = 0 V, TXD = VIO
RL = open (no load), RCM = open
See Figure 7-2 and Figure 8-3
2 0.5 VCC 3 V
VSYM Driver symmetry
(VO(CANH) + VO(CANL))/VCC
STB = 0 V, TXD = 250 kHz, 1 MHz, 2.5 MHz
RL = 60 Ω, CSPLIT = 4.7 nF, CL = open, RCM = open
See Figure 7-2 and Figure 9-2
0.9 1.1 V/V
VSYM_DC DC output symmetry
(VCC - VO(CANH) - VO(CANL))
STB = 0 V
RL = 60 Ω, CL = open
See Figure 7-2 and Figure 8-3
–400 400 mV
VOD(DOM) Differential output voltage Normal mode
Dominant
CANH - CANL STB = 0 V, TXD = 0 V
50 Ω ≤ RL ≤ 65 Ω, CL = open
See Figure 7-2 and Figure 8-3
1.5 3 V
STB = 0 V, TXD = 0 V
45 Ω ≤ RL ≤ 70 Ω, CL = open
See Figure 7-2 and Figure 8-3
1.4 3.3 V
STB = 0 V, TXD = 0 V
RL = 2240 Ω, CL = open
See Figure 7-2 and Figure 8-3
1.5 5 V
VOD(REC) Differential output voltage Normal mode
Recessive
CANH - CANL STB = 0 V, TXD = VIO
RL = 60 Ω, CL = open
See Figure 7-2 and Figure 8-3
–120 12 mV
STB = 0 V, TXD = VIO
RL = open, CL = open
See Figure 7-2 and Figure 8-3
–50 50 mV
VO(STB) Bus output voltage
Standby mode
CANH STB = VIO
RL = open
See Figure 7-2 and Figure 8-3
-0.1 0.1 V
CANL -0.1 0.1 V
CANH - CANL -0.2 0.2 V
IOS(SS_DOM) Short-circuit steady-state output current, dominant
Normal mode
STB = 0 V, TXD = 0 V
V(CANH) = -15 V to 40 V, CANL = open
See Figure 7-7 and Figure 8-3
–115 mA
STB = 0 V, TXD = 0 V
V(CAN_L) = -15 V to 40 V, CANH = open
See Figure 7-7 and Figure 8-3
115 mA
IOS(SS_REC) Short-circuit steady-state output current, recessive
Normal mode
STB = 0 V, TXD = VIO
–27 V ≤ VBUS ≤ 32 V, where VBUS = CANH = CANL
See Figure 7-7 and Figure 8-3
–5 5 mA
Receiver Electrical Characteristics
VIT Input threshold voltage
Normal mode
STB = 0 V
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
500 900 mV
VIT(STB) Input threshold
Standby mode
STB = VIO
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
400 1150 mV
VDOM Dominant state differential input voltage range
Normal mode
STB = 0 V
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
0.9 9 V
VREC Recessive state differential input voltage range
Normal mode
STB = 0 V
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
-4 0.5 V
VDOM(STB) Dominant state differential input voltage range
Standby mode
STB = VIO
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
1.15 9 V
VREC(STB) Recessive state differential input voltage range
Standby mode
STB = VIO
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
-4 0.4 V
VHYS Hysteresis voltage for input threshold
Normal mode
STB = 0 V
-12 V ≤ VCM ≤ 12 V
See Figure 7-3 and Table 8-6
115 mV
VCM Common-mode range
Normal and standby modes
See Figure 7-3 and Table 8-6 –12 12 V
ILKG(IOFF) Unpowered bus input leakage current CANH = CANL = 5 V, VCC = VIO = GND 5 µA
CI Input capacitance to ground (CANH or CANL) TXD = VIO (1) 20 pF
CID Differential input capacitance 10 pF
RID Differential input resistance STB = 0 V, TXD = VIO (1)
-12 V ≤ VCM ≤ 12 V
40 90
RIN Single-ended input resistance
(CANH or CANL)
20 45
RIN(M) Input resistance matching
[1 – (RIN(CANH) / RIN(CANL))] × 100 %
V(CAN_H) = V(CAN_L) = 5 V –1 1 %
TXD Terminal (CAN Transmit Data Input)
VIH High-level input voltage Devices without VIO 0.7 VCC V
VIH High-level input voltage Devices with VIO 0.7 VIO V
VIL Low-level input voltage Devices without VIO 0.3 VCC V
VIL Low-level input voltage Devices with VIO 0.3 VIO V
IIH High-level input leakage current TXD = VCC = VIO = 5.5 V –2.5 0 1 µA
IIL Low-level input leakage current TXD = 0 V
VCC= VIO = 5.5 V
–200 -100 –20 µA
ILKG(OFF) Unpowered leakage current TXD = 5.5 V
VCC= VIO = 0 V
–1 0 1 µA
CI Input capacitance VIN = 0.4×sin(2×π×2×106×t)+2.5 V 5 pF
RXD Terminal (CAN Receive Data Output)
VOH High-level output voltage IO = –2 mA
Devices without VIO
See Figure 7-3
0.8 VCC V
VOH High-level output voltage IO = –1.5 mA
Devices with VIO
See Figure 7-3
0.8 VIO   V
VOL Low-level output voltage IO = 2 mA
Devices without VIO
See Figure 7-3
0.2 VCC V
VOL Low-level output voltage IO = 1.5mA
Devices with VIO
See Figure 7-3
  0.2 VIO V
ILKG(OFF) Unpowered leakage current RXD = 5.5 V
VCC = VIO = 0 V
–1 0 1 µA
STB Terminal (Standby Mode Input)
VIH High-level input voltage Devices without VIO 0.7 VCC V
VIH High-level input voltage Devices with VIO 0.7 VIO V
VIL Low-level input voltage Devices without VIO 0.3 VCC V
VIL Low-level input voltage Devices with VIO 0.3 VIO V
IIH High-level input leakage current VCC = VIO = STB = 5.5 V –2 2 µA
IIL Low-level input leakage current STB = 0 V
VCC = VIO = 5.5 V,
–20 –2 µA
ILKG(OFF) Unpowered leakage current STB = 5.5V
VCC = VIO = 0 V
–1 0 1 µA
VIO = VCC in non-V variants of device