SLLSF70C September   2018  – February 2022 TCAN1046V-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  ESD Ratings - IEC Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Characteristics
    6. 6.6  Supply Characteristics
    7. 6.7  Dissipation Ratings
    8. 6.8  Electrical Characteristics
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Pin Description
        1. 8.3.1.1 TXD1 and TXD2
        2. 8.3.1.2 GND1 and GND2
        3. 8.3.1.3 VCC
        4. 8.3.1.4 RXD1 and RXD2
        5. 8.3.1.5 VIO
        6. 8.3.1.6 CANH and CANL
        7. 8.3.1.7 STB1 and STB2 (Standby)
      2. 8.3.2 CAN Bus States
      3. 8.3.3 TXD Dominant Timeout (DTO)
      4. 8.3.4 CAN Bus Short Circuit Current Limiting
      5. 8.3.5 Thermal Shutdown (TSD)
      6. 8.3.6 Undervoltage Lockout
      7. 8.3.7 Unpowered Device
      8. 8.3.8 Floating pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operating Modes
      2. 8.4.2 Normal Mode
      3. 8.4.3 Standby Mode
        1. 8.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 8.4.4 Driver and Receiver Function
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 CAN Termination
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1 Bus Loading, Length and Number of Nodes
      3. 9.2.3 Application Curves
    3. 9.3 System Examples
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

  • Place the protection and filtering circuitry close to the bus connectors, J1 and J2, to prevent transients, ESD, and noise from propagating onto the board. This layout example shows optional transient voltage suppression (TVS) diodes, D1 and D2, which may be implemented if the system-level requirements exceed the specified rating of the transceiver. This example also shows optional bus filter capacitors C6, C8, C9, and C11.
  • Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device.
  • Use at least two vias for supply and ground connections of bypass capacitors and protection devices to minimize trace and via inductance.
    Note:

    High frequency current follows the path of least impedance and not the path of least resistance.

  • This layout example shows how split termination could be implemented on the CAN node. The termination is split into two pairs of resistors, R8, R9, R10, and R11, with the center or split tap of the termination connected to ground via capacitors C7 and C10. Split termination provides common mode filtering for the bus. See Section 9.2.1.1, Section 8.3.4, and Equation 2 for information on termination concepts and power ratings needed for the termination resistor(s).
  • To limit current of digital lines series resistors may be used. Examples are R2, R3, R5, R6, R7, and R12.
  • Pin 1 and pin 6 are shown for the TXD1 and TXD2 inputs of the device with R1 and R4 as optional pull-up resistors. If an open drain host controller is used this is mandatory to ensure the bit timing into the device is met.
  • Pin 8 and 14 are shown assuming the mode pin STB is used. If the device is only used in normal mode then only a pull-down resistor is needed.