SLLSFL8A July   2021  – December 2021 TCAN1046AV-Q1 , TCAN1048AV-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description Continued
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  ESD Ratings — IEC Specifications
    4. 8.4  Recommended Operating Conditions
    5. 8.5  Thermal Characteristics
    6. 8.6  Supply Characteristics
    7. 8.7  Dissipation Ratings
    8. 8.8  Electrical Characteristics
    9. 8.9  Switching Characteristics
    10. 8.10 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Pin Description
        1. 10.3.1.1 TXD1 and TXD2
        2. 10.3.1.2 GND1 and GND2
        3. 10.3.1.3 VCC
        4. 10.3.1.4 RXD1 and RXD2
        5. 10.3.1.5 VIO
        6. 10.3.1.6 CANH and CANL
        7. 10.3.1.7 STB1, STB2, nSTB1, and nSTB2 (Standby)
      2. 10.3.2 CAN Bus States
      3. 10.3.3 TXD Dominant Timeout (DTO)
      4. 10.3.4 CAN Bus Short Circuit Current Limiting
      5. 10.3.5 Thermal Shutdown (TSD)
      6. 10.3.6 Undervoltage Lockout
      7. 10.3.7 Unpowered Device
      8. 10.3.8 Floating pins
    4. 10.4 Device Functional Modes
      1. 10.4.1 Operating Modes
      2. 10.4.2 Normal Mode
      3. 10.4.3 Standby Mode
        1. 10.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 10.4.4 Driver and Receiver Function
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
        1. 11.2.1.1 CAN Termination
      2. 11.2.2 Detailed Design Procedures
        1. 11.2.2.1 Bus Loading, Length and Number of Nodes
      3. 11.2.3 Application Curves
    3. 11.3 System Examples
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Receiving Notification of Documentation Updates
    2. 14.2 Support Resources
    3. 14.3 Trademarks
    4. 14.4 Electrostatic Discharge Caution
    5. 14.5 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

CAN Bus States

The CAN bus has two logical states during operation: recessive and dominant. See Figure 10-2 and Figure 10-3.

A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD1, TXD2, RXD1 and RXD2 pins. A recessive bus state occurs when the bus is biased to VCC/2 via the high-resistance internal input resistors (RIN) of the receiver and corresponds to a logic high on the TXD1, TXD2, RXD1 and RXD2 pins.

A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a dominant bit at the same time during arbitration, and in this case the differential voltage of the bus is greater than the differential voltage of a single driver.

The TCAN104xAV-Q1 transceiver implements a low-power standby (STB or nSTB) mode which enables a third bus state where the bus pins are weakly biased to ground via the high resistance internal resistors of the receiver. See Figure 10-2 and Figure 10-3.

GUID-9C5A1AC8-622B-4655-9584-204D56614F8D-low.gif Figure 10-2 Bus States
GUID-52FABF45-70FB-40C5-AC94-D8FD53DE3AE4-low.gif
Normal Mode
Standby Mode
Figure 10-3 Simplified Recessive Common Mode Bias Unit and Receiver