SNLS766 July   2024 TDP20MB421

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 DC Electrical Characteristics
    6. 5.6 High-Speed Electrical Characteristics
    7. 5.7 SMBUS/I2C Timing Characteristics
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 5-Level Control Inputs
      2. 6.3.2 Linear Equalization
      3. 6.3.3 Flat Gain
    4. 6.4 Device Functional Modes
      1. 6.4.1 Active Mode
      2. 6.4.2 Standby Mode
    5. 6.5 Programming
      1. 6.5.1 Pin Mode
      2. 6.5.2 SMBUS/I2C Register Control Interface
        1. 6.5.2.1 Shared Registers
        2. 6.5.2.2 Channel Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 DP 2.1 Mainlink Signal Conditioning
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

The TDP20MB421 provides signal conditioning to four DP mainlink channels. The device is a linear redriver which is agnostic to DP link training. The DP link training negotiation between a display source and sink stays effective through the device. The redriver becomes part of the electrical channel along with passive traces, cables, and other channel elements, resulting in the optimum source and sink parameters for the best electrical link.

DisplayPort side band signals AUXp,n and HPD are bypassed. The link still has successful link training through TDP20MB421. An inverted HPD signal can control the device standby operation using the PD pin; however, provision for appropriate filtering out of HPD interrupt signals.

In some applications where a microcontroller or other link monitoring device has DP link state information, the microcontroller can exercise I2C registers of TDP20MB421 for additional power management.

TDP20MB421 Simplified Schematic for DisplayPort Multiplexer ApplicationFigure 7-1 Simplified Schematic for DisplayPort Multiplexer Application