SLDS145D October   2001  – February 2024 TFP410

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 T.M.D.S. Pixel Data and Control Signal Encoding
      2. 6.3.2 Universal Graphics Controller Interface Voltage Signal Levels
      3. 6.3.3 Universal Graphics Controller Interface Clock Inputs
    4. 6.4 Device Functional Modes
      1. 6.4.1 Universal Graphics Controller Interface Modes
      2. 6.4.2 Data De-skew Feature
      3. 6.4.3 Hot Plug/Unplug (Auto Connect/Disconnect Detection)
      4. 6.4.4 Device Configuration and I2C RESET Description
      5. 6.4.5 DE Generator
    5. 6.5 Programming
      1. 6.5.1 I2C Interface
    6. 6.6 Register Maps
      1. 6.6.1  VEN_ID Register (Sub-Address = 01−00 ) [reset = 0x014C]
      2. 6.6.2  DEV_ID Register (Sub-Address = 03–02) [reset = 0x0410]
      3. 6.6.3  REV_ID Register (Sub-Address = 04) [reset = 0x00]
      4. 6.6.4  Reserved Register (Sub-Address = 07–05) [reset = 0x641400]
      5. 6.6.5  CTL_1_MODE (Sub-Address = 08) [reset = 0xBE]
      6. 6.6.6  CTL_2_MODE Register (Sub-Address = 09) [reset = 0x00]
      7. 6.6.7  CTL_3_MODE Register (Sub-Address = 0A) [reset = 0x80]
      8. 6.6.8  CFG Register (Sub-Address = 0B)
      9. 6.6.9  RESERVED Register (Sub-Address = 0E–0C) [reset = 0x97D0A9]
      10. 6.6.10 DE_DLY Register (Sub-Address = 32) [reset = 0x00]
      11. 6.6.11 DE_CTL Register (Sub-Address = 33) [reset = 0x00]
      12. 6.6.12 DE_TOP Register (Sub-Address = 34) [reset = 0x00]
      13. 6.6.13 DE_CNT Register (Sub-Address = 37–36) [reset = 0x0000]
      14. 6.6.14 DE_LIN Register (Sub-Address = 39–38) [reset = 0x0000]
      15. 6.6.15 H_RES Register (Sub-Address = 3B−3A)
      16. 6.6.16 V_RES Register (Sub-Address = 3D−3C)
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Data and Control Signals
        2. 7.2.2.2 Configuration Options
        3. 7.2.2.3 Power Supplies Decoupling
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 DVDD
      2. 7.3.2 TVDD
      3. 7.3.3 PVDD
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Layer Stack
        2. 7.4.1.2 Routing High-Speed Differential Signal Traces (RxC-, RxC+, Rx0-, Rx0+, Rx1-, Rx1+, Rx2-, Rx2+)
        3. 7.4.1.3 DVI Connector
      2. 7.4.2 Layout Example
      3. 7.4.3 TI PowerPAD 64-Pin HTQFP Package
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PAP|64
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Routing High-Speed Differential Signal Traces
(RxC-, RxC+, Rx0-, Rx0+, Rx1-, Rx1+, Rx2-, Rx2+)

Trace impedance should be controlled for optimal performance. Each differential pair should be equal in length and symmetrical and should have equal impedance to ground with a trace separation of 2 times to 4 times the height. A differential trace separation of 4 times the height yields about 6% cross-talk (6% effect on impedance).

We recommend that differential trace routing should be side-by-side, though it is not important that the differential traces be tightly coupled together, because tight coupling is not achievable on PCB traces. Typical ratios on PCBs are only 20% to 50%; 99.9% is the value of a well balanced twisted pair cable. Each differential trace should be as short as possible (< 2 inches is preferable) with no 90° angles. These high-speed transmission traces should be on layer 1, which is the top layer.

RxC-, RxC+, Rx0-, Rx0+, Rx1-, Rx1+, Rx2-, Rx2+ signals all route directly from the DVI connector pins to the device, no external components are needed.