SBOS766B February   2016  – February 2016 THS3217

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: D2S
    6. 7.6  Electrical Characteristics: OPS
    7. 7.7  Electrical Characteristics: D2S + OPS
    8. 7.8  Electrical Characteristics: Midscale (DC) Reference Buffer
    9. 7.9  Typical Characteristics: D2S + OPS
    10. 7.10 Typical Characteristics: D2S Only
    11. 7.11 Typical Characteristics: OPS only
    12. 7.12 Typical Characteristics: Midscale (DC) Reference Buffer
    13. 7.13 Typical Characteristics: Switching Performance
    14. 7.14 Typical Characteristics: Miscellaneous Performance
  8. Parameter Measurement Information
    1. 8.1 Overview
    2. 8.2 Frequency Response Measurement
    3. 8.3 Harmonic Distortion Measurement
    4. 8.4 Noise Measurement
    5. 8.5 Output Impedance Measurement
    6. 8.6 Step-Response Measurement
    7. 8.7 Feedthrough Measurement
    8. 8.8 Midscale Buffer ROUT Versus CLOAD Measurement
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Differential to Single-Ended Stage (D2S) With Fixed Gain of 2-V/V (Pins 2, 3, 6 and 14)
      2. 9.3.2 Midscale (DC) Reference Buffer (Pin 1 and Pin 15)
      3. 9.3.3 Output Power Stage (OPS) (Pins 4, 7, 9, 10, 11, and 12)
        1. 9.3.3.1 Output DC Offset and Drift for the OPS
        2. 9.3.3.2 OPS Harmonic Distortion (HD) Performance
        3. 9.3.3.3 Switch Feedthrough to the OPS
        4. 9.3.3.4 Driving Capacitive Loads
      4. 9.3.4 Digital Control Lines
    4. 9.4 Device Functional Modes
      1. 9.4.1 Full-Signal Path Mode
        1. 9.4.1.1 Internal Connection With Fixed Common-Mode Output Voltage
        2. 9.4.1.2 Internal Connection With Adjustable Common-Mode Output Voltage
        3. 9.4.1.3 External Connection
      2. 9.4.2 Dual-Output Mode
      3. 9.4.3 Differential I/O Voltage Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Typical Applications
        1. 10.1.1.1 High-Frequency, High-Voltage, Dual-Output Line Driver for AWGs
          1. 10.1.1.1.1 Design Requirements
          2. 10.1.1.1.2 Detailed Design Procedure
          3. 10.1.1.1.3 Application Curves
        2. 10.1.1.2 High-Voltage Pulse-Generator
          1. 10.1.1.2.1 Design Requirements
          2. 10.1.1.2.2 Detailed Design Procedure
          3. 10.1.1.2.3 Application Curves
        3. 10.1.1.3 Single-Supply, AC-Coupled, Piezo Element Driver
          1. 10.1.1.3.1 Design Requirements
        4. 10.1.1.4 Output Common-Mode Control Using the Midscale Buffer as a Level Shifter
          1. 10.1.1.4.1 Design Requirements
        5. 10.1.1.5 Differential I/O Driver With independent Common-Mode Control
          1. 10.1.1.5.1 Design Requirements
  11. 11Power Supply Recommendations
    1. 11.1 Thermal Considerations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
        1. 13.1.1.1 TINA-TI (Free Software Download)
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

13 Device and Documentation Support

13.1 Device Support

13.1.1 Development Support

13.1.1.1 TINA-TI™ (Free Software Download)

TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

NOTE

These files require that either the TINA software (from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

13.2 Documentation Support

13.2.1 Related Documentation

For related documentation, see the following:

  • THS3217EVM User Guide, SBOU161
  • Voltage Feedback vs. Current Feedback Op Amps, SLVA051
  • Current Feedback Amplifier Analysis and Compensation, SLOA021
  • Current Feedback Amplifiers: Review, Stability Analysis, and Applications, SBOA081
  • Stabilizing Current-Feedback Amplifiers, SBOA095

13.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

13.4 Trademarks

E2E is a trademark of Texas Instruments.

TINA, DesignSoft are trademarks of DesignSoft, Inc.

TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc.

All other trademarks are the property of their respective owners.

13.5 Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

13.6 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.