SBOS458H December   2008  – June 2015 THS4521 , THS4522 , THS4524

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS+ - VS- = 3.3 V
    6. 7.6 Electrical Characteristics: VS+ - VS- = 5 V
    7. 7.7 Typical Characteristics
    8. 7.8 Typical Characteristics: VS+ - VS- = 3.3 V
    9. 7.9 Typical Characteristics: 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Frequency Response
      2. 8.3.2  Distortion
      3. 8.3.3  Slew Rate, Transient Response, Settling Time, Output Impedance, Overdrive, Output Voltage, and Turn-On/Turn-Off Time
      4. 8.3.4  Common-Mode and Power-Supply Rejection
      5. 8.3.5  VOCM Input
      6. 8.3.6  Typical Performance Variation With Supply VoltageTypical Performance Variation with Supply Voltage section
      7. 8.3.7  title of Single-Supply Operation sectionSingle-Supply Operation
      8. 8.3.8  Low-Power Applications and the Effects of Resistor Values on Bandwidth
      9. 8.3.9  Frequency Response Variation due to Package Options
      10. 8.3.10 Driving Capacitive Loads
      11. 8.3.11 Audio Performance
      12. 8.3.12 Audio On/Off Pop Performance
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation from Single-Ended Sources to Differential Outputs
        1. 8.4.1.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 8.4.1.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 8.4.1.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
        4. 8.4.1.4 Input Impedance for the Single-Ended to Differential FDA Configuration
      2. 8.4.2 Differential-Input to Differential-Output Operation
        1. 8.4.2.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
    5. 8.5 Programming
      1. 8.5.1 Input Common-Mode Voltage Range
        1. 8.5.1.1 Setting the Output Common-Mode Voltage
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Audio ADC Driver Performance: THS4521 and PCM4204 Combined Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Audio ADC Driver Performance: THS4521 and PCM3168 Combined Performance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 ADC Driver Performance: THS4521 and ADS1278 Combined Performance
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 ADC Driver Performance: THS4521 and ADS8321 Combined Performance
        3. 9.2.2.3 Application Curves
      3. 9.2.3 Differential Input to Differential Output Amplifier
      4. 9.2.4 Single-Ended Input to Differential Output Amplifier
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

10 Power Supply Recommendations

The THS452x family is principally intended to operate with a nominal single-supply voltage of +3 V to +5 V. Supply-voltage tolerances are supported with the specified operating range of 2.5 V (10% low on a 3-V nominal supply) and 5.5 V (8% high on a 5-V nominal supply). Supply decoupling is required, as described in the Application and Implementation. Split (or bipolar) supplies can be used with the THS452x family, as long as the total value across the device remains less than 5.5 V (absolute maximum).

Using a negative supply to deliver a true swing to ground output in driving SAR ADCs may be desired. While the THS452x family quotes a rail-to-rail output, linear operation requires approximately a 200-mV headroom to the supply rails. One easy option for extending the linear output swing to ground is to provide the small negative supply voltage required using the LM7705 fixed –230-mV, negative-supply generator. This low-cost, fixed negative-supply generator accepts the 3- to 5-V positive supply input used by the THS452x and provides a –230-mV supply for the negative rail. Using the LM7705 provides an effective solution, as shown in the TI Designs TIDU187, Extending Rail-to-Rail Output Range for Fully Differential Amplifiers to Include True Zero Volts.