SLOS823D December   2012  – March 2020 THS4531A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     1-kHz FFT Plot on Audio Analyzer
  4. Revision History
  5. Related Products
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: VS = 2.7 V
    6. 7.6 Electrical Characteristics: VS = 5 V
    7. 7.7 Typical Characteristics
      1. 7.7.1 Typical Characteristics: VS = 2.7 V
      2. 7.7.2 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
        1. 8.3.1.1 Setting the Output Common-Mode Voltage
      2. 8.3.2 Power Down
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Frequency Response, and Output Impedance
      2. 9.1.2  Distortion
      3. 9.1.3  Slew Rate, Transient Response, Settling Time, Overdrive, Output Voltage, and Turnon and Turnoff Time
      4. 9.1.4  Common-Mode and Power Supply Rejection
      5. 9.1.5  VOCM Input
      6. 9.1.6  Balance Error
      7. 9.1.7  Single-Supply Operation
      8. 9.1.8  Low-Power Applications and the Effects of Resistor Values on Bandwidth
      9. 9.1.9  Driving Capacitive Loads
      10. 9.1.10 Audio Performance
      11. 9.1.11 Audio On and Off Pop Performance
    2. 9.2 Typical Applications
      1. 9.2.1 SAR ADC Performance: THS4531A and ADS8321 Combined Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Audio ADC Driver Performance: THS4531A and PCM4204 Combined Performance
        1. 9.2.2.1 Detailed Design Procedure
        2. 9.2.2.2 Application Curves
      3. 9.2.3 SAR ADC Performance: THS4531A and ADS7945 Combined Performance
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curve
      4. 9.2.4 Differential-Input to Differential-Output Amplifier
        1. 9.2.4.1 AC-Coupled, Differential-Input to Differential-Output Design Issues
      5. 9.2.5 Single-Ended to Differential FDA Configuration
        1. 9.2.5.1 Input Impedance
      6. 9.2.6 Single-Ended Input to Differential Output Amplifier
        1. 9.2.6.1 AC-Coupled Signal Path Considerations for Single-Ended Input to Differential Output Conversion
        2. 9.2.6.2 DC-Coupled Input Signal Path Considerations for Single-Ended to Differential Conversion
        3. 9.2.6.3 Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA
      7. 9.2.7 Differential Input to Single-Ended Output Amplifier
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Resistor Design Equations for the Single-Ended to Differential Configuration of the FDA

The design equations for setting the resistors around an FDA to convert from a single-ended input signal to differential output can be approached from several directions. Here, several critical assumptions are made to simplify the results:

  • The feedback resistors are selected first and set equal on the two sides.
  • The DC and AC impedances from the summing junctions back to the signal source and ground (or a bias voltage on the nonsignal input side) are set equal to retain feedback divider balance on each side of the FDA.

Both of these assumptions are typical for delivering the best dynamic range through the FDA signal path.

After the feedback resistor values are chosen, the aim is to solve for the RT (a termination resistor to ground on the signal input side), RG1 (the input gain resistor for the signal path), and RG2 (the matching gain resistor on the nonsignal input side); see Figure 96 and Figure 97. The same resistor solutions can be applied to either AC- or DC-coupled paths. Adding blocking capacitors in the input-signal chain is a simple option. Adding these blocking capacitors after the RT element (as shown in Figure 96) has the advantage of removing any DC currents in the feedback path from the output VOCM to ground.

Earlier approaches to the solutions for RT and RG1 (when the input must be matched to a source impedance, RS) follow an iterative approach. This complexity arises from the active input impedance at the RG1 input. When the FDA is used to convert a single-ended signal to differential, the common-mode input voltage at the FDA inputs must move with the input signal to generate the inverted output signal as a current in the RG2 element. A more recent solution is shown as Equation 8, where a quadratic in RT can be solved for an exact value. This quadratic emerges from the simultaneous solution for a matched input impedance and target gain. The only inputs required are:

  • The selected RF value.
  • The target voltage gain (Av) from the input of RT to the differential output voltage.
  • The desired input impedance at the junction of RT and RG1 to match RS.

Solving this quadratic for RT starts the solution sequence, as shown in Equation 8:

Equation 8. THS4531A EQ1.gif

Being a quadratic, there are limits to the range of solutions. Specifically, after RF and RS are chosen, there is physically a maximum gain beyond which Equation 8 starts to solve for negative RT values (if input matching is a requirement). With RF selected, use Equation 9 to verify that the maximum gain is greater than the desired gain.

Equation 9. THS4531A EQ2.gif

If the achievable AV(MAX) is less than desired, increase the RF value. After RT is derived from Equation 8, the RG1 element is given by Equation 10:

Equation 10. THS4531A EQ3.gif

Then, the simplest approach is to use a single RG2 = RT || RS + RG1 on the nonsignal input side. Often, this approach is shown as the separate RG1 and RS elements. Using these separate elements provides a better divider match on the two feedback paths, but a single RG2 is often acceptable. A direct solution for RG2 is given as Equation 11:

Equation 11. THS4531A EQ4.gif

This design proceeds from a target input impedance matched to RS, signal gain Av from the matched input to the differential output voltage, and a selected RF value. The nominal RF value chosen for the THS4531A family characterization is 2 kΩ. As discussed previously, going lower improves noise and phase margin, but reduces the total output load impedance possibly degrading harmonic distortion. Going higher increases the output noise, and might reduce the loop-phase margin because of the feedback pole to the input capacitance, but reduces the total loading on the outputs.

Using Equation 9 to Equation 11 to sweep the target gain from 1 to AV(MAX) < 10 V/V gives Table 9, which shows exact values for RT, RG1, and RG2, where a 50-Ω source must be matched while setting the two feedback resistors to 2 kΩ. One possible solution for 1% standard values is shown, and the resulting actual input impedance and gain with % errors to the targets are also shown in Table 9.

Table 9. Rf = 2 kΩ, Matched Input to 50 Ω, Gain of 1 to 10-V/V Single-Ended to Differential(1)

Av Rt, EXACT (Ω) Rt 1% Rg1, EXACT (Ω) Rg1 1% Rg2, EXACT (Ω) Rg2 1% ACTUAL ZIN %ERR TO Rs ACTUAL GAIN %ERR TO Av
1 51 51.1 1996.5 2000 2021.8 2000 50.1 0.3 0.998 –0.2
2 51.7 52.3 996.9 1000 1022.5 1020 50.5 1.0 1.994 –0.3
3 52.5 52.3 656.1 649 681.7 681 49.7 –0.5 3.032 1.1
4 53.2 53.6 491.5 487 517.4 523 50.2 0.4 4.035 0.9
5 54 53.6 388 392 413.9 412 49.6 –0.9 4.953 –0.9
6 54.7 54.9 322.7 324 348.9 348 49.9 –0.2 5.978 –0.4
7 55.5 54.9 272.9 274 299.1 301 49.1 –1.7 6.974 –0.4
8 56.3 56.2 238.1 237 264.6 267 49.3 –1.3 8.034 0.4
9 57.1 57.6 211.2 210 237.9 237 49.7 –0.6 9.044 0.5
10 57.9 57.6 187.4 187 214.1 215 48.9 –2.3 10.017 0.2
RF = 2 kΩ, RS = 50 Ω.

These equations and design flow apply to any FDA. Using the feedback resistor value as a starting point is particularly useful for current-feedback-based FDAs such as the LMH6554, where the value of these feedback resistors determines the frequency response flatness. Similar tables can be built using the equations provided here for other source impedances, RF values, and gain ranges.

The TINA model correctly shows this actively-set input impedance in the single-ended to differential configuration, and is a good tool to validate the gains, input impedances, response shapes, and noise issues.