SLLSFQ8B December   2024  – December 2024 THVD9491-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  ESD Ratings [IEC]
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Power Dissipation
    7. 5.7  Electrical Characteristics
    8. 5.8  Switching Characteristics: 20Mbps
    9. 5.9  Switching Characteristics: 50Mbps
    10. 5.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 ±40-V Fault Protection
      2. 7.3.2 Integrated IEC ESD and EFT Protection
      3. 7.3.3 Driver Overvoltage and Overcurrent Protection
      4. 7.3.4 Enhanced Receiver Noise Immunity
      5. 7.3.5 Receiver Fail-Safe Operation
      6. 7.3.6 Low-Power Shutdown Mode
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Data Rate and Bus Length
        2. 8.2.1.2 Stub Length
        3. 8.2.1.3 Bus Loading
        4. 8.2.1.4 Transient Protection
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted). All typical values are at 25°C and supply voltage of VCC = 5 V, VIO = 3.3 V , unless otherwise noted. (2) 
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Driver
|VOD| Driver differential output voltage magnitude RL = 60 Ω, –12 V ≤ Vtest ≤ 12 V. See Figure 6-1  1.5 2.8 V
RL = 60 Ω, –12 V ≤ Vtest ≤ 12 V, 4.5 V ≤ VCC ≤ 5.5 V. See  Figure 6-1  2.1 3.3 V
RL = 100 Ω See  Figure 6-2  2 4 V
RL = 54 Ω. See  Figure 6-2  1.5 3.3 V
Δ|VOD| Change in differential output voltage RL = 54 Ω or 100 Ω.  See  Figure 6-2  –200 200 mV
VOC Common-mode output voltage RL = 54 Ω or 100 Ω (See Figure 6-2 1 VCC/2 3 V
ΔVOC(SS) Change in steady-state common-mode output voltage RL = 54 Ω or 100 Ω. See Figure 6-2 –50 50 mV
IOS Short-circuit output current DE = VIO, -40 V ≤ (VA or VB) ≤ 40 V, or A shorted to B (A,B are driver terminals for half duplex, Y/Z are for full duplex) –250 250 mA
Receiver
II Bus input current DE = 0 V, VCC and VIO = 0 V or 5.5 V VI = 12 V 75 125 μA
VI = –7 V –100 –60 μA
VTH+ Positive-going input threshold voltage(1) Over common-mode range of ± 12 V 40 125 200 mV
VTH- Negative-going input threshold voltage(1) –200 –125 -40 mV
VHYS Input hysteresis 250 mV
VTH_FSH Input fail-safe threshold –40 40 mV
CA,B Input differential capacitance Measured between A and B, f = 1 MHz 50 pF
VOH Output high voltage IOH = –8 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V VIO – 0.4 VIO – 0.2 V
VOL Output low voltage IOL = 8 mA, VIO = 3 to 3.6 V or 4.5 V to 5.5 V 0.2 0.4 V
VOH Output high voltage IOH = –4 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V VIO – 0.4 VIO – 0.2 V
VOL Output low voltage IOL = 4 mA, VIO = 1.65 to 1.95 V or 2.25 V to 2.75 V 0.2 0.4 V
IOZ Output high-impedance current, R pin VO = 0 V or VIO, RE = VIO –1 1 µA
Logic
IIN Input current (DE , SLR) 1.65 V ≤ VIO ≤ 5.5 V, 0 V ≤ VIN ≤ VIO 5 µA
IIN Input current (D, RE) 1.65 V ≤ VIO ≤ 5.5 V, 0 V ≤ VIN ≤ VIO –5 µA
Thermal Protection
TSHDN Thermal shutdown threshold Temperature rising 150 180 °C
THYS Thermal shutdown hysteresis 10 °C
Supply
UVVCC (rising) Rising under-voltage threshold on VCC 2.3 2.6 V
UVVCC (falling) Falling under-voltage threshold on VCC 1.95 2.2 V
UVVCC(hys) Hysteresis on under-voltage of VCC 150 mV
UVVIO (rising) Rising under-voltage threshold on VIO 1.4 1.6 V
UVVIO (falling) Falling under-voltage threshold on VIO 1.2 1.35 V
UVVIO(hys) Hysteresis on under-voltage of VIO 40 mV
ICC Supply current (quiescent), VCC = 4.5 V to 5.5 V Driver and receiver enabled RE = 0 V, DE = VIO, No load 4 7.2 mA
Driver enabled, receiver disabled RE = VIO, DE = VIO, No load 3 4.2 mA
Driver disabled, receiver enabled RE = 0 V, DE = 0 V, No load 2.5 3 mA
Driver and receiver disabled RE = VIO, DE = 0 V, D = open, No load 30 100 µA
ICC Supply current (quiescent), VCC = 3 V to 3.6 V Driver and receiver enabled RE = 0 V, DE = VIO, No load 3.5 5 mA
Driver enabled, receiver disabled RE = VIO, DE = VIO, No load 2.5 3 mA
Driver disabled, receiver enabled RE = 0 V, DE = 0 V, No load 2 3 mA
Driver and receiver disabled RE = VIO, DE = 0 V, D = open, No load 30 100 µA
IIO Logic supply current (quiescent), VIO = 3 to 3.6 V Driver disabled, Receiver enabled, SLR = GND DE = 0 V, RE = 0 V, No load  4.5 10 µA
Driver disabled, Receiver enabled, SLR = VIO 3.3 10 µA
Driver disabled, Receiver disabled, SLR = GND DE = 0 V, RE = VIO, No load 4.5 8.4 µA
Driver disabled, Receiver disabled, SLR = VIO 3.3 8.4 µA
Under any specific conditions, VTH+ is assured to be at least VHYS higher than VTH–.
A and B are receiver inputs, Y and Z are driver output terminals for the device