SLLSFS6A September   2024  – December 2024 TIOL221

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 ESD Ratings - IEC Specifications
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Thermal Information
    6. 5.6 Electrical Characteristics
    7. 5.7 Switching Characteristics
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1  Wake-Up Detection
      2. 7.3.2  Current Limit Configuration
        1. 7.3.2.1 Current Limit Configuration in Pin-Mode
        2. 7.3.2.2 Current Limit Configuration in SPI mode
      3. 7.3.3  CQ Current Fault Detection, Indication and Auto Recovery
      4. 7.3.4  DO Current Fault Detection, Indication and Auto Recovery
      5. 7.3.5  CQ and DI Receivers
      6. 7.3.6  Fault Reporting
        1. 7.3.6.1 Thermal Warning, Thermal Shutdown
      7. 7.3.7  The Integrated Voltage Regulator (LDO)
      8. 7.3.8  Reverse Polarity Protection
      9. 7.3.9  Integrated Surge Protection and Transient Waveform Tolerance
      10. 7.3.10 Undervoltage Lock-Out (UVLO)
      11. 7.3.11 Interrupt Function
    4. 7.4 Device Functional Modes
      1. 7.4.1 CQ and DO Tracking mode
    5. 7.5 SPI Programming
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Driving Capacitive Loads
        2. 8.2.2.2 Driving Inductive Loads
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. TIOL221 Registers
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Mechanical Data

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGE|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Fault Reporting

In the pin mode, NFLT1 pin is driven low if the CQ driver enters overcurrent condition, or if the CQ driver temperature sensor has exceeded T(WRN). NFLT1 returns to high-impedance as soon as both the fault conditions clear.

Similarly, NFLT2 pin is driven low if the DO driver enters overcurrent condition, or if the DO driver temperature sensor has exceeded T(WRN). NFLT2 returns to high-impedance as soon as both the fault conditions clear.

If the LP supply or the VOUT supply fall below their UVLO thresholds, RESET pin goes low. RESET pin goes high after both LP and VOUT rise above their UVLO thresholds.

TIOL221 CQ Driver
                    State Diagram
Note: NFLT1 = [CUR_OK1 && TMP_OK1]. The LDO has a thermal sensor. The LDO can turn off if the sensor temperature reaches T(SDN), and turn-off both the CQ and DO drivers.
Figure 7-2 CQ Driver State Diagram
TIOL221 DO Driver State
                    Diagram Figure 7-3 DO Driver State Diagram
Note: Note: NFLT2 = [CUR_OK2 && TMP_OK2]. The LDO has a thermal sensor. The LDO can turn off if the sensor temperature reaches T(SDN), and turn-off both the CQ and DO drivers.