SLLS890C August   2008  – April 2024 TL28L92

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Description
  4. 3Pin Configurations and Functions
  5. 4Electrical Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 Static Characteristics for 5V Operation
    3. 4.3 Static Characteristics for 3.3V Operation
    4. 4.4 Dynamic Characteristics for 5V Operation
    5. 4.5 Dynamic Characteristics for 3.3V Operation
    6. 4.6 Typical Performance
    7. 4.7 Timing Diagrams
    8. 4.8 Test Information
  6. 5Detailed Description
    1. 5.1 Overview
    2. 5.2 Functional Block Diagram
    3. 5.3 Feature Description
      1. 5.3.1 Data Bus Buffer
      2. 5.3.2 Operation Control
      3. 5.3.3 Interrupt Control
      4. 5.3.4 FIFO Configuration
      5. 5.3.5 68xxx Mode
      6. 5.3.6 Timing Circuits
        1. 5.3.6.1  Crystal Clock
        2. 5.3.6.2  Baud Rate Generator
        3. 5.3.6.3  Counter/Timer
        4. 5.3.6.4  Timer Mode
        5. 5.3.6.5  Counter Mode
        6. 5.3.6.6  Time-Out Mode
        7. 5.3.6.7  Time-Out Mode Caution
        8. 5.3.6.8  Communications Channels A and B
        9. 5.3.6.9  Input Port
        10. 5.3.6.10 Output Port
      7. 5.3.7 Operation
        1. 5.3.7.1 Transmitter
        2. 5.3.7.2 Receiver
        3. 5.3.7.3 Transmitter Reset and Disable
        4. 5.3.7.4 Receiver FIFO
        5. 5.3.7.5 Receiver Status Bits
        6. 5.3.7.6 Receiver Reset and Disable
        7. 5.3.7.7 Watchdog
        8. 5.3.7.8 Receiver Time-Out Mode
        9. 5.3.7.9 Time-Out Mode Caution
  7. 6Programming
    1. 6.1 Register Overview
    2. 6.2 Condensed Register Bit Formats
    3. 6.3 Register Descriptions
      1. 6.3.1  Mode Registers
        1. 6.3.1.1 Mode Register 0 Channel A (MR0A)
        2. 6.3.1.2 Mode Register 1 Channel A (MR1A)
        3. 6.3.1.3 Mode Register 2 Channel A (MR2A)
        4. 6.3.1.4 Mode Register 0 Channel B (MR0B)
        5. 6.3.1.5 Mode Register 1 Channel B (MR1B)
        6. 6.3.1.6 Mode Register 2 Channel B (MR2B)
      2. 6.3.2  Clock Select Registers
        1. 6.3.2.1 Clock Select Register Channel A (CSRA)
        2. 6.3.2.2 Clock Select Register Channel B (CSRB)
      3. 6.3.3  Command Registers
        1. 6.3.3.1 Command Register Channel A (CRA)
        2. 6.3.3.2 Command Register Channel B (CRB)
      4. 6.3.4  Status Registers
        1. 6.3.4.1 Status Register Channel A (SRA)
        2. 6.3.4.2 Status Register Channel B (SRB)
      5. 6.3.5  Output Configuration Control Register (OPCR)
      6. 6.3.6  Set Output Port Bits Register (SOPR)
      7. 6.3.7  Reset Output Port Bits Register (ROPR)
      8. 6.3.8  Output Port Register (OPR)
      9. 6.3.9  Auxiliary Control Register (ACR)
      10. 6.3.10 Input Port Change Register (IPCR)
      11. 6.3.11 Interrupt Status Register (ISR)
      12. 6.3.12 Interrupt Mask Register (IMR)
      13. 6.3.13 Interrupt Vector Register (IVR; 68xxx Mode) or General Purpose Register (GP; 80xxx Mode)
      14. 6.3.14 Counter and Timer Registers
    4. 6.4 Output Port Notes
    5. 6.5 CTS, RTS, CTS Enable Tx Signals
  8. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Support Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Glossary
  9. 8Revision History
  10. 9Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Port

The inputs to this unlatched 7-bit (6-bit for 68xxx mode) port can be read by the CPU by performing a read operation at address 0xD. A HIGH input results in a logic 1 while a LOW input results in a logic 0. D7 always read as a logic 1. The pins of this port can also serve as auxiliary inputs to certain portions of the DUART logic, modem and DMA.

Four change-of-state detectors are provided which are associated with inputs IP3, IP2, IP1 and IP0. A HIGH-to-LOW or LOW-to-HIGH transition of these inputs, lasting longer than 25μs to 50μs, sets the corresponding bit in the input port change register. The bits are cleared when the register is read by the CPU. Any change of state can also be programmed to generate an interrupt to the CPU.

The input port change of state detection circuitry uses a 38.4kHz sampling clock derived from one of the baud rate generator taps. This results in a sampling period of slightly more than 25 μs (this assumes that the clock input is 3.6864MHz). The detection circuitry, to specify that a true change in level has occurred, requires two successive samples at the new logic level be observed. As a consequence, the minimum duration of the signal change is 25μs if the transition occurs coincident with the first sample pulse. The 50μs time refers to the situation in which the change of state is just missed and the first change of state is not detected until 25μs later.