SLDS162B March   2009  – December 2015 TLC59108F

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power-On Reset
      2. 8.3.2 External Reset
      3. 8.3.3 Software ResetFixed address typo in the Software Reset Section
      4. 8.3.4 Individual Brightness Control With Group Dimming or Blinking
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Device Address
      2. 8.5.2 Regular I2C Bus Slave Address
      3. 8.5.3 LED All Call I2C Bus Address
      4. 8.5.4 LED Sub Call I2C Bus Address
      5. 8.5.5 Software Reset I2C Bus Address
      6. 8.5.6 Characteristics of the I2C Bus
        1. 8.5.6.1 Bit Transfer
        2. 8.5.6.2 Start and Stop Conditions
      7. 8.5.7 System Configuration
      8. 8.5.8 Acknowledge
    6. 8.6 Register Maps
      1. 8.6.1 Control Register
      2. 8.6.2 Mode Register 1 (MODE1)
      3. 8.6.3 Mode Register 2 (MODE2)
      4. 8.6.4 Individual Brightness Control Registers (PWM0-PWM7)
      5. 8.6.5 Group Duty Cycle Control Register (GRPPWM)
      6. 8.6.6 Group Frequency Register (GRPFREQ)
      7. 8.6.7 LED Driver Output State Registers (LEDOUT0, LEDOUT1)
      8. 8.6.8 I2C Bus Sub-Address Registers 1 to 3 (SUBADR1-SUBADR3)
      9. 8.6.9 LED All Call I2C Bus Address Register (ALLCALLADR)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Setting LED Current
      2. 9.1.2 PWM Brightness Dimming
      3. 9.1.3 TLC59108 and TLC59108F DifferencesTLC59108 and TLC59108F Differences section.
      4. 9.1.4 Connecting Multiple Devices
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage 0 7 V
VI Input voltage –0.4 7 V
VO Output voltage –0.5 20 V
IO Continuous output current 120 mA
PD Power dissipation, TA = 25 °C, JESD 51-7 PW package 1.2 W
RGY package 2.2
TJ Junction temperature –40 150 °C
Tstg Storage temperature –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

See (1).
MIN MAX UNIT
VCC Supply voltage 3 5.5 V
VIH High-level input voltage SCL, SDA, RESET, A0, A1, A2, A3 0.7 × VCC 5.5 V
VIL Low-level input voltage SCL, SDA, RESET, A0, A1, A2, A3 0 0.3 × VCC V
VO Output voltage OUT0 to OUT7 17 V
IOL Low-level output current SDA VCC = 3 V 20 mA
VCC = 4.5 V 30
IO Output current OUT0 to OUT7 5 120 mA
TA Operating free-air temperature –40 85 °C
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation.

6.4 Thermal Information

THERMAL METRIC(1) TLC59108F UNIT
PW (TSSOP) RGY (VQFN)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 98.9 39.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 32.9 44.7 °C/W
RθJB Junction-to-board thermal resistance 49.9 14.8 °C/W
ψJT Junction-to-top characterization parameter 1.7 1.0 °C/W
ψJB Junction-to-board characterization parameter 49.3 14.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 7.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

VCC = 3 V to 5.5 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
II Input/output leakage current SCL, SDA, A0, A1, A2, A3, RESET VI = VCC or GND ±0.3 μA
Output leakage current OUT0 to OUT7 VO = 17 V, TJ = 25°C 0.5 μA
VPOR Power-on reset voltage 2.5 V
IOL Low-level output current SDA VCC = 3 V, VOL = 0.4 V 20 mA
VCC = 5 V, VOL = 0.4 V 30
VOL Low-level output voltage OUT0 to OUT7 VCC = 3 V, IOL = 120 mA 230 450 mV
VCC = 4.5 V, IOL = 120 mA 200 400
rON ON-state resistance OUT0 to OUT7 VCC = 3 V, IOL = 120 mA 1.92 3.75 Ω
VCC = 4.5 V, IOL = 120 mA 1.64 3.3
TSD Overtemperature shutdown(2) 150 175 200 °C
THYS Restart hysteresis 15 °C
Ci Input capacitance SCL, A0, A1, A2, A3, RESET VI = VCC or GND 5 pF
Cio Input/output capacitance SDA VI = VCC or GND 8 pF
ICC Supply current VCC = 3 V OUT0 to OUT7 = OFF 6 mA
VCC = 4.5 V 9
(1) All typical values are at TA = 25°C.
(2) Specified by design, not production tested.

6.6 I2C Interface Timing Requirements

TA = –40°C to 85°C
STANDARD-MODE
I2C BUS
FAST-MODE
I2C BUS
FAST-MODE PLUS
I2C BUS
UNIT
MIN MAX MIN MAX MIN MAX
I2C Interface
fSCL SCL clock frequency 0 100 0 400 0 1000 kHz
tBUF I2C bus free time between Stop and Start 4.7 1.3 0.5 μs
tHD;STA Hold time (repeated) for Start condition 4 0.6 0.26 μs
tSU;STA Set-up time (repeated) for Start condition 4.7 0.6 0.26 μs
tSU;STO Set-up time for Stop condition 4 0.6 0.26 μs
tHD;DAT Data hold time 0 0 0 ns
tVD;ACK Data valid acknowledge time(1) 0.3 3.45 0.1 0.9 0.05 0.45 μs
tVD;DAT Data valid time(2) 0.3 3.45 0.1 0.9 0.05 0.45 μs
tSU;DAT Data set-up time 250 100 50 ns
tLOW Low period of the SCL clock 4.7 1.3 0.5 μs
tHIGH High period of the SCL clock 4 0.6 0.26 μs
tf Fall time of both SDA and SCL signals(4) (5) 300 20 + 0.1Cb(3) 300 120 ns
tr Rise time of both SDA and SCL signals 1000 20 + 0.1Cb(3) 300 120 ns
tSP Pulse width of spikes that must be suppressed by the input filter(6) 50 50 50 ns
Reset
tW Reset pulse width 10 10 10 ns
tREC Reset recovery time 0 0 0 ns
tRESET Time to reset(7)(8) 400 400 400 ns
(1) tVD;ACK = time for Acknowledgement signal from SCL low to SDA (out) low.
(2) tVD;DAT = minimum time for SDA data out to be valid following SCL low.
(3) Cb = total capacitance of one bus line in pF.
(4) A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to bridge the undefined region of SCLs falling edge.
(5) The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time (tf) for the SDA output stage is specified at 250 ns. This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.
(6) Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns
(7) Resetting the device while actively communicating on the bus may cause glitches or errant Stop conditions.
(8) Upon reset, the full delay will be the sum of tRESET and the RC time constant of the SDA bus.

6.7 Typical Characteristics

TLC59108F tc_icc_vs_vcc_SLDS162.gif
all LEDs on
Duty Cycle = 100%
Figure 1. ICC vs VCC
TLC59108F tc_icc_vs_vcc_SLDS162_2.gif
all LEDs off
Figure 2. ICC vs VCC