SLIS180 May 2016 TLC6C5912
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Logic supply voltage | 8 | V | ||
VI | Logic input-voltage | –0.3 | 8 | V | |
VDS | Power DMOS drain-to-source voltage | 42 | V | ||
Continuous total dissipation | See Thermal Information | ||||
Operating ambient temperature (Top) | 105 | °C | |||
TJ | Operating junction temperature | –40 | 125 | °C | |
Tstg | Storage temperature | –55 | 165 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±750 |
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Supply voltage | 3 | 5.5 | V |
VIH | High-level input voltage | 2.4 | V | |
VIL | Low-level input voltage | 0.7 | V | |
tsu | Setup time, SER IN high before SRCK↑ | 15 | ns | |
th | Hold time, SER IN high after SRCK↑ | 15 | ns | |
tw | Pulse duration | 40 | ns | |
TA | Operating ambient temperature | –40 | 105 | °C |
THERMAL METRIC(1) | TLC6C5912 | UNIT | |
---|---|---|---|
PW (TSSOP) | |||
20 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 114.8 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 44.1 | °C/W |
RθJB | Junction-to-board thermal resistance | 61.3 | °C/W |
ψJT | Junction-to-top characterization parameter | 4.7 | °C/W |
ψJB | Junction-to-board characterization parameter | 60.8 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
DRAIN0 to DRAIN11, drain-to-source voltage |
40 | V | |||||
VOH | High-level output voltage, SER OUT |
IOH = –20 μA | VCC = 5 V | 4.9 | 4.99 | V | |
IOH = –4 mA | 4.5 | 4.69 | |||||
VOL | Low-level output voltage, SER OUT |
IOH = 20 μA | VCC = 5 V | 0.001 | 0.01 | V | |
IOH = 4 mA | 0.25 | 0.4 | |||||
IIH | High-level input current | VCC = 5 V, VI = VCC | 0.2 | μA | |||
IIL | Low-level input current | VCC = 5 V, VI = 0 | –0.2 | μA | |||
ICC | Logic supply current | VCC = 5 V, No clock signal |
All outputs off | 0.1 | 1 | μA | |
All outputs on | 130 | 170 | |||||
ICC(FRQ) | Logic supply current at frequency | fSRCK = 5 MHz, CL = 30 pF, all outputs on | 300 | µA | |||
IDSX | Off-state drain current | VDS = 30 V, VCC = 5 V | 0.1 | μA | |||
VDS = 30 V, TC = 125°C, VCC = 5 V | 0.15 | 0.3 | |||||
rDS(on) | Static drain-source on-state resistance | ID = 20 mA, VCC = 5 V, TA = 25°C, single channel ON | 6 | 7.4 | 8.6 | Ω | |
ID = 20 mA, VCC = 5 V, TA = 25°C, all channels ON | 6.7 | 8.9 | 9.6 | ||||
ID = 20 mA, VCC = 3.3 V, TA = 25°C, single channel ON | 7.9 | 9.3 | 11.2 | ||||
ID = 20 mA, VCC = 3.3 V, TA = 25°C, all channels ON | 8.7 | 10.6 | 12.3 | ||||
ID = 20 mA, VCC = 5 V, TA = 105°C, single channel ON | 9.1 | 11.2 | 12.9 | ||||
ID = 20 mA, VCC = 5 V, TA = 105°C, all channels ON | 10.3 | 13 | 14.5 | ||||
ID = 20 mA, VCC = 3.3 V, TA = 105°C, single channel ON | 11.6 | 13.7 | 16.4 | ||||
ID = 20 mA, VCC = 3.3 V, TA = 105°C, all channels ON | 12.8 | 15.6 | 18.2 | ||||
TSHUTDOWN | Thermal shutdown trip point | 150 | 175 | 200 | °C | ||
tHYS | Hysteresis | 15 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tPLH | Propagation delay time, low-to-high-level output from G | CL = 30 pF, ID = 48 mA | 210 | ns | ||
tPHL | Propagation delay time, high-to-low-level output from G | 75 | ns | |||
tr | Rise time, drain output | 250 | ns | |||
tf | Fall time, drain output | 200 | ns | |||
tpd | Propagation delay time, SRCK↓ to SEROUT | CL = 30 pF, ID = 48 mA | 35 | ns | ||
tor | SEROUT rise time (10% to 90%) | CL = 30 pF | 20 | ns | ||
tof | SEROUT fall time (90% to 10%) | CL = 30 pF | 20 | ns | ||
f(SRCK) | Serial clock frequency | CL = 30 pF, ID = 20 mA | 10 | MHz | ||
tSRCK_WH | SRCK pulse duration, high | 30 | ns | |||
tSRCK_WL | SRCK pulse duration, low | 30 | ns |
Figure 1 shows the SER IN to SER OUT waveform. The output signal appears on the falling edge of the shift register clock (SRCK) because there is a phase inverter at SER OUT (see Figure 2). As a result, it takes seven and a half periods of SRCK for data to transfer from SER IN to SER OUT.
Figure 2 shows the switching times and voltage waveforms. Tests for all these parameters took place using the test circuit shown in Figure 12.