SLLSFH7 August   2021 TLIN1039-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 ESD Ratings - IEC Specification
    4. 7.4 Thermal Information
    5. 7.5 Recommended Operating Conditions
    6. 7.6 Power Supply Characteristics
    7. 7.7 Electrical Characteristics
    8. 7.8 AC Switching Characteristics
    9. 7.9 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  LIN (Local Interconnect Network) Bus
        1. 9.3.1.1 LIN Transmitter Characteristics
        2. 9.3.1.2 LIN Receiver Characteristics
          1. 9.3.1.2.1 Termination
      2. 9.3.2  TXD (Transmit Input and Output)
      3. 9.3.3  RXD (Receive Output)
      4. 9.3.4  VSUP (Supply Voltage)
      5. 9.3.5  GND (Ground)
      6. 9.3.6  EN (Enable Input)
      7. 9.3.7  Protection Features
      8. 9.3.8  TXD Dominant Timeout (DTO)
      9. 9.3.9  Bus Stuck Dominant System Fault: False Wake-Up Lockout
      10. 9.3.10 Thermal Shutdown
      11. 9.3.11 Under Voltage on VSUP
      12. 9.3.12 Unpowered Transceiver
    4. 9.4 Functional Modes
      1. 9.4.1 Normal Mode
      2. 9.4.2 Sleep Mode
      3. 9.4.3 Standby Mode
      4. 9.4.4 Wake-Up Events
        1. 9.4.4.1 Wake-Up Request (RXD)
        2. 9.4.4.2 Mode Transitions
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedures
        1. 10.2.2.1 Normal Mode Application Note
        2. 10.2.2.2 Standby Mode Application Note
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

parameters valid across -40℃ ≤ TJ ≤ 150℃ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
RXD Output Terminal
VOL Low-level voltage Based upon external pull-up to VCC (4) 0.6 V
IOL Low-level output current, open drain LIN = 0 V, RXD = 0.4 V 1.5 mA
ILKG Leakage current, high-level LIN = VSUP, RXD = VCC –5 5 µA
TXD Input Terminal
VIL Low-level input voltage 0.8 V
VIH High-level input voltage 2 V
ILKG Low-level input leakage current TXD = 0 V –5 5 µA
RTXD Internal pull-down resistor value 125 350 800 kΩ
EN Input Terminal
VIL Low-level input voltage –0.3 0.8 V
VIH High-level input voltage 2 5.25 V
VHYS Hysteresis voltage By design and characterization 30 500 mV
IIL Low-level input current EN = 0 V –5 5 µA
REN Internal pull-down resistor 125 350 800 kΩ
LIN Terminal 
VOH LIN recessive high-level output voltage(3) TXD = VCC, IO = 0 mA
7 V ≤ VSUP ≤ 36 V
0.85 VSUP
VOH LIN recessive high-level output voltage(3) TXD = VCC, IO = 0 mA
4.5 V ≤ VSUP < 7 V
3 V
VOH LIN recessive high-level output voltage(1) (2) TXD = VCC, IO = 0 mA
7 V ≤ VSUP ≤ 18 V
0.8 VSUP
VOL LIN dominant low-level output voltage(3) TXD = 0 V
7 V ≤ VSUP ≤ 36 V
0.2 VSUP
VOL LIN dominant low-level output voltage(3) TXD = 0 V
4.5 V ≤ VSUP < 7 V
1.2 V
VOL LIN dominant low-level output voltage(1) (2) TXD = 0 V
7 V ≤ VSUP ≤ 18 V
0.2 VSUP
VBUSdom Low-level input voltage
ISO 17987 Param 17
LIN dominant (including LIN dominant for wake up)
See Figure 8-3 and Figure 8-4
0.4 VSUP
VBUSrec High-level input voltage
ISO 17987 Param 18
LIN recessive
See Figure 8-3 and Figure 8-4
0.6 VSUP
VIH LIN recessive high-level input voltage threshold(1) (2) 7 V ≤ VSUP ≤ 18 V 0.47 0.6 VSUP
VIL LIN dominant low-level input voltage threshold(1) (2) 7 V ≤ VSUP ≤ 18 V 0.4 0.53 VSUP
VSUP_NON_OP VSUP where impact of recessive LIN bus < 5%(3) TXD & RXD open
4.5 V ≤ LIN ≤ 45 V
–0.3 42 V
VBUS_CNT Receiver center threshold VBUS_CNT = (VBUSrec + VBUSdom)/2
See Figure 8-3 and Figure 8-4
0.475 0.5 0.525 VSUP
VHYS Hysteresis voltage (ISO 17987) VHYS = VBUSrec - VBUSdom
See Figure 8-3 and Figure 8-4
0.175 VSUP
VHYS Hysteresis voltage (SAE J2602) VHYS = VIH - VIL
See Figure 8-3 and Figure 8-4
0.07 0.175 VSUP
VSERIAL_DIODE Serial diode LIN termination pull-up path  ISERIAL_DIODE = 10 µA 0.4 0.7 1.0 V
IBUS(LIM) Limiting current
ISO 17987 Param 12
TXD = 0 V, VLIN = 18 V
VSUP = 18 V
40 90 200 mA
IBUS_PAS_dom Receiver leakage current, dominant Driver off/recessive, LIN = 0 V
VSUP = 12 V
See Figure 8-6
–1 mA
IBUS_PAS_rec1 Receiver leakage current, recessive Driver off/recessive, LIN ≥ VSUP
4.5 V ≤ VSUP ≤ 36 V
See Figure 8-7
20 µA
IBUS_PAS_rec2 Receiver leakage current, recessive Driver off/recessive, LIN = VSUP
See Figure 8-7
–5 5 µA
IBUS_NO_GND Leakage current, loss of ground GNDDevice = VSUP = 18 V
RMeas = 1 kΩ
0 V < VLIN < 18 V
–1 1 mA
Ileak gnd(dom) Leakage current, loss of ground (5) VSUP = 8 V, GND = open, VSUP = 18 V, GND = open
RCOMMANDER = 1 kΩ, CL = 1 nF
RRESPONDER = 20 kΩ, CL = 1 nF
LIN = dominant
–1 1 mA
Ileak gnd(rec) Leakage current, loss of ground (5) VSUP = 8 V, GND = open, VSUP = 18 V, GND = open
RCOMMANDER = 1 kΩ, CL = 1 nF
RRESPONDER = 20 kΩ, CL = 1 nF
LIN = recessive
–100 100 µA
IBUS_NO_BAT Leakage current, loss of supply VSUP = GND
0 V ≤ VLIN ≤ 18 V
5 µA
IRSLEEP Pull-up current source to VSUP sleep mode VSUP = 14 V, LIN = GND –20 –1.5 µA
RPU Pull-up resistor to VSUP  Normal and standby modes 20 45 60 kΩ
CLIN Capacitance of the LIN pin VSUP = 14 V 25 pF
Duty Cycle Characteristics
D1 Duty Cycle 1(3)
ISO 17987 Param 27
THREC(MAX) = 0.744 x VSUP
THDOM(MAX) = 0.581 x VSUP
VSUP = 7 V to 18 V, tBIT = 50 µs
D1 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.396
D1 Duty Cycle 1 (3) (6)  THREC(MAX) = 0.665 x VSUP,
THDOM(MAX) = 0.499 x VSUP
VSUP = 4.5 V to 7 V, tBIT = 50 µs
D1 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.396
D1 Duty cycle 1(1) (2) (6)  THREC(MAX) = 0.744 x VSUP,
THDOM(MAX) = 0.581 x VSUP,
VSUP = 7 V to 18 V, tBIT = 52 µs
D1 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.396
D2 Duty Cycle 2(3)
ISO 17987 Param 28
THREC(MIN) = 0.422 x VSUP
THDOM(MIN) = 0.284 x VSUP
VSUP = 7 V to 18 V, tBIT = 50 µs
D2 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.581
D2 Duty cycle 2(3) (6)  THREC(MIN) = 0.496 x VSUP,
THDOM(MIN) = 0.361 x VSUP,
VSUP = 4.5 V to 7 V, tBIT = 50 µs
D2 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.581
D2 Duty cycle 2(1) (2) (6)  THREC(MIN) = 0.422 x VSUP,
THDOM(MIN) = 0.284 x VSUP,
VSUP = 7 V to 18 V, tBIT = 52 µs
D2 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.581
D3 Duty Cycle 3(3)
ISO 17987 Param 29
THREC(MAX) = 0.778 x VSUP
THDOM(MAX) = 0.616 x VSUP
VSUP = 7 V to 18 V, tBIT = 96 µs
D3 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.417
D3 Duty Cycle 3(3) (6)  THREC(MAX) = 0.665 x VSUP
THDOM(MAX) = 0.499 x VSUP
VSUP = 4.5 V to 7 V, tBIT = 96 µs
D3 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.417
D3 Duty cycle 3(1) (2) (6)  THREC(MAX) = 0.778 x VSUP
THDOM(MAX) = 0.616 x VSUP
VSUP = 7 V to 18 V, tBIT = 96 µs
D3 = tBUS_rec(min)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.417
D4 Duty Cycle 4(3)
ISO 17987 Param 30
THREC(MIN) = 0.389 x VSUP
THDOM(MIN) = 0.251 x VSUP
VSUP = 7 V to 18 V, tBIT = 96 µs
D4 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.59
D4 Duty Cycle 4(3) (6)  THREC(MAX) = 0.496 x VSUP
THDOM(MAX) = 0.361 x VSUP
VSUP = 4.5 V to 7 V, tBIT = 96 µs
D4 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.59
D4 Duty cycle 4(1) (2) (6)  THREC(MIN) = 0.389 x VSUP
THDOM(MIN) = 0.251 x VSUP
VSUP = 7 V to 18 V, tBIT = 96 µs
D4 = tBUS_rec(MAX)/(2 x tBIT)
See Figure 8-10 and Figure 8-11
0.59
D1LB Duty cycle 1 at low battery(1) (2) (6)  THREC(MAX) = 0.665 x VSUP,
THDOM(MAX) = 0.499 x VSUP,
VSUP = 5.5 V to 7 V, tBIT = 52 µs
0.396
D2LB Duty cycle 2 at low battery(1) (2) (6)  THREC(MAX) = 0.496 x VSUP
THDOM(MAX) = 0.361 x VSUP
VSUP = 6.1 V to 7 V, tBIT = 52 µs
0.581
D3LB Duty cycle 3 at low battery(1) (2) (6)  THREC(MAX) = 0.665 x VSUP,
THDOM(MAX) = 0.499 x VSUP,
VSUP = 5.5 V to 7 V, tBIT = 96 µs
0.396
D4LB Duty cycle 4 at low battery(1) (2) (6)  THREC(MAX) = 0.496 x VSUP
THDOM(MAX) = 0.361 x VSUP
VSUP = 6.1 V to 7 V, tBIT = 96 µs
0.581
Tr-d max_D1 Transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Recessive to dominant
THREC(MAX) = 0.744 x VSUP,
THDOM(MAX) = 0.581 x VSUP
7 V ≤ VSUP ≤ 18 V, tBIT = 52 µs
tREC(MAX)_D1 - tDOM(MIN)_D1
10.8 µs
Td-r max_D2 Transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Dominant to recessive
THREC(MAX) = 0.422 x VSUP,
THDOM(MAX) = 0.284 x VSUP
7 V ≤ VSUP ≤ 18 V, tBIT = 52 µs
tDOM(MAX)_D2 - tREC(MIN)_D2
8.4 µs
Tr-d max_D3 Transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Recessive to dominant
THREC(MAX) = 0.778 x VSUP
THDOM(MAX) = 0.616 x VSUP
7 V ≤ VSUP ≤ 18 V, tBIT = 96 µs
tREC(MAX)_D3 - tDOM(MIN)_D3
15.9 µs
Td-r max_D4 Transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Dominant to recessive
THREC(MIN) = 0.389 x VSUP
THDOM(MIN) = 0.251 x VSUP
7 V ≤ VSUP ≤ 18 V, tBIT = 96 µs
tDOM(MAX)_D4 - tREC(MIN)_D4
17.28 µs
Tr-d max_low Low battery transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Recessive to dominant
THREC(MAX) = 0.665 x VSUP,
THDOM(MAX) = 0.499 x VSUP
5.5 V ≤ VSUP ≤ 7 V, tBIT = 52 µs
tREC(MAX)_low - tDOM(MIN)_low
10.8 µs
Td-r max_low Low battery transmitter propagation delay timings for the duty cycle(1) (2) (6) 
Dominant to recessive
THREC(MAX) = 0.496 x VSUP
THDOM(MAX) = 0.361 x VSUP
6.1 V ≤ VSUP ≤ 7 V, tBIT = 52 µs
tDOM(MAX)_low - tREC(MIN)_low
8.4 µs
SAE 2602 commander node load conditions: 5.5 nF/4 kΩ and 899 pF/20 kΩ
SAE 2602 responder node load conditions: 5.5 nF/875 Ω and 899 pF/900 Ω
ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.
RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage.
Ileak gnd = (VBAT - VLIN)/RLoad
Specified by design