SLLSFE4A May   2022  – December 2022 TLIN1431-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 ESD Ratings, IEC Specification
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Power Supply Characteristics
    7. 6.7 Electrical Characteristics
    8. 6.8 AC Switching Characteristics
    9. 6.9 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Test Circuit: Diagrams and Waveforms
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  LIN (Local Interconnect Network) Bus
        1. 8.3.1.1 LIN Transmitter Characteristics
        2. 8.3.1.2 LIN Receiver Characteristics
          1. 8.3.1.2.1 Termination
      2. 8.3.2  TXD (Transmit Input and Output)
      3. 8.3.3  RXD (Receive Output)
      4. 8.3.4  WAKE (High Voltage Local Wake Up Input)
      5. 8.3.5  WDT or CLK (Pin Programmable Watchdog Delay Input or SPI Clock)
      6. 8.3.6  WDI or SDI (Watchdog Timer Input or SPI Serial Data In)
      7. 8.3.7  PIN or nCS (Pin Watchdog Select or SPI Chip Select)
      8. 8.3.8  LIMP (Limp Home Output – High Voltage Open Drain Output)
        1. 8.3.8.1 LIMP in Pin Control Mode
        2. 8.3.8.2 LIMP in SPI Control Mode
      9. 8.3.9  nWDR/SDO (Watchdog Timeout Reset Output/SPI Serial Data Out)
      10. 8.3.10 HSS (High-side Switch)
      11. 8.3.11 HSSC or FSO (High-side Switch Control or Function Output)
      12. 8.3.12 WKRQ or INH (Wake Request or Inhibit)
      13. 8.3.13 PV
      14. 8.3.14 DIV_ON
      15. 8.3.15 VBAT (Battery Voltage)
      16. 8.3.16 VSUP (Supply Voltage)
      17. 8.3.17 GND (Ground)
      18. 8.3.18 EN or nINT (Enable Input or Interrupt Output)
      19. 8.3.19 nRST (Reset Input and Reset Output)
      20. 8.3.20 VCC (Supply Output)
      21. 8.3.21 VBAT Voltage Divider
      22. 8.3.22 Protection Features
        1. 8.3.22.1  Sleep Wake Error (SWE) Timer
        2. 8.3.22.2  Device Reset
        3. 8.3.22.3  TXD Dominant Time Out (DTO)
        4. 8.3.22.4  Bus Stuck Dominant System Fault: False Wake Up Lockout
        5. 8.3.22.5  Thermal Shutdown
        6. 8.3.22.6  Under-voltage on VSUP
        7. 8.3.22.7  Unpowered Device and LIN Bus
        8. 8.3.22.8  Floating Pins
        9. 8.3.22.9  VCC Voltage Regulator
          1. 8.3.22.9.1 Under or Over Voltage and Short Circuit
          2. 8.3.22.9.2 Output Capacitance Selection
          3. 8.3.22.9.3 Low-Voltage Tracking
          4. 8.3.22.9.4 Power Supply Recommendation
        10. 8.3.22.10 Watchdog
          1. 8.3.22.10.1 Watchdog in Pin Control Mode
          2. 8.3.22.10.2 Watchdog in SPI Control Mode
          3. 8.3.22.10.3 Watchdog Error Counter
          4. 8.3.22.10.4 Pin Control Mode
          5. 8.3.22.10.5 SPI Control Programming
          6. 8.3.22.10.6 Watchdog Register Relationship
          7. 8.3.22.10.7 Watchdog Timing
      23. 8.3.23 Channel Expansion
        1. 8.3.23.1 Channel Expansion for LIN
        2. 8.3.23.2 Channel Expansion for CAN Transceiver
    4. 8.4 Device Functional Modes
      1. 8.4.1 Init Mode
      2. 8.4.2 Normal Mode
      3. 8.4.3 Fast Mode
      4. 8.4.4 Sleep Mode
      5. 8.4.5 Standby Mode
      6. 8.4.6 Restart Mode
        1. 8.4.6.1 Restart Counter
        2. 8.4.6.2 nRST Behavior in Restart Mode
      7. 8.4.7 Fail-safe Mode
      8. 8.4.8 Wake Up Events
        1. 8.4.8.1 Wake Up Request (RXD)
        2. 8.4.8.2 Local Wake Up (LWU) via WAKE Terminal
          1. 8.4.8.2.1 Static WAKE
          2. 8.4.8.2.2 Cyclic Sense Wake
      9. 8.4.9 Mode Transitions
    5. 8.5 Programming
      1. 8.5.1 SPI Communication
        1. 8.5.1.1 Cyclic Redundancy Check
        2. 8.5.1.2 Chip Select Not (nCS)
        3. 8.5.1.3 Serial Clock Input (CLK)
        4. 8.5.1.4 Serial Data Input (SDI)
        5. 8.5.1.5 Serial Data Output (SDO)
    6. 8.6 Registers
      1. 8.6.1  DEVICE_ID_y Register (Address = 0h + formula) [reset = 0h]
      2. 8.6.2  REV_ID_MAJOR Register (Address = 8h) [reset = 01h]
      3. 8.6.3  REV_ID_MINOR Register (Address = 9h) [reset = 0h]
      4. 8.6.4  CRC_CNTL Register (Address = Ah) [reset = 0h]
      5. 8.6.5  CRC_POLY_SET (Address = Bh) [reset = 00h]
      6. 8.6.6  Scratch_Pad_SPI Register (Address = Fh) [reset = 0h]
      7. 8.6.7  WAKE_PIN_CONFIG1 Register (Address = 11h) [reset = 04h]
      8. 8.6.8  WAKE_PIN_CONFIG2 Register (Address = 12h) [reset = 2h]
      9. 8.6.9  WD_CONFIG_1 Register (Address = 13h) [reset = 90h]
      10. 8.6.10 WD_CONFIG_2 Register (Address = 14h) [reset = 02h]
      11. 8.6.11 WD_INPUT_TRIG Register (Address = 15h) [reset = 0h]
      12. 8.6.12 WD_RST_PULSE Register (Address = 16h) [reset = 40h]
      13. 8.6.13 FSM_CONFIG Register (Address = 17h) [reset = 0h]
      14. 8.6.14 FSM_CNTR Register (Address = 18h) [reset = 0h]
      15. 8.6.15 DEVICE_RST Register (Address = 19h) [reset = 0h]
      16. 8.6.16 DEVICE_CONFIG (Address = 1Ah) [reset = 80h]
      17. 8.6.17 DEVICE_CONFIG2 (Address = 1Bh) [reset = 0h]
      18. 8.6.18 SWE_TIMER (Address = 1Ch) [reset = 30h]
      19. 8.6.19 LIN_CNTL (Address = 1Dh) [reset = 00h]
      20. 8.6.20 HSS_CNTL (Address = 1Eh) [reset = 0h]
      21. 8.6.21 PWM1_CNTL1 (Address = 1Fh) [reset = 0h]
      22. 8.6.22 PWM1_CNTL2 (Address = 20h) [reset = 0h]
      23. 8.6.23 PWM1_CNTL3 (Address = 21h) [reset = 00h]
      24. 8.6.24 PWM2_CNTL1 (Address = 22h) [reset = 0h]
      25. 8.6.25 PWM2_CNTL2 (Address = 23h) [reset = 0h]
      26. 8.6.26 PWM2_CNTL3 (Address = 24h) [reset = 0h]
      27. 8.6.27 TIMER1_CONFIG (Address = 25h) [reset = 00h]
      28. 8.6.28 TIMER2_CONFIG (Address = 26h) [reset = 00h]
      29. 8.6.29 RSRT_CNTR (Address = 28h) [reset = 40h]
      30. 8.6.30 nRST_CNTL (Address = 29h) [reset = 00h]
      31. 8.6.31 INT_GLOBAL Register (Address = 50h) [reset = A0h]
      32. 8.6.32 INT_1 Register (Address = 51h) [reset = 0h]
      33. 8.6.33 INT_2 Register (Address = 52h) [reset = 40h]
      34. 8.6.34 INT_3 Register (Address 53h) [reset = 0h]
      35. 8.6.35 INT_EN_1 Register (Address = 56h) [reset = B0h]
      36. 8.6.36 INT_EN_2 Register (Address = 57h) [reset = 37h]
      37. 8.6.37 INT_EN_3 Register (Address =58h) [reset = BCh]
      38. 8.6.38 INT_4 Register (Address = 5Ah) [reset = 0h]
      39. 8.6.39 INT_EN_4 Register (Address = 5Eh) [reset = CCh]
      40. 8.6.40 Reserved Registers
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Device Brownout Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Normal Mode Application Note
        2. 9.2.1.2 Standby Mode Application Note
        3. 9.2.1.3 TXD Dominant State Timeout Application Note
      2. 9.2.2 Detailed Design Procedures
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Functional Modes

The TLIN1431x-Q1 has multiple functional modes of operation, Init, pin/SPI Init, normal, standby, sleep, restart and fail-safe. The next sections describe these modes as well as how the device moves between the different modes. Figure 8-24 and Figure 8-25 graphically shows the relationship while Table 8-4 and tables show the state of pins in each control mode. Upon power up, and once VCC ≥ UVCC prior to tINACT_FS timing out the device enters an initialization mode (INIT). While in this mode, VCC is ramping, nRST ramps with VCC, all other pins are off except for monitoring the state of the Pin/nCS pin to determine which control method is being implemented. Once the control method is determined, the device follows the pin control or SPI control path of the state diagram.

Table 8-4 Operating PIN Mode
FunctionRestart ModeSleep ModeStandby ModeNormal ModeFail-safe ModeFast Mode
ENNALowLowHighNAPulse then high
RXDHighFloatingLow for a wake event and power up event otherwise highMirrors LIN busFloatingMirrors LIN bus
LIN BUS TerminationWeak current pull-upWeak current pull-up45 kΩ (typical)45 kΩ (typical)Weak current pull-up45 kΩ (typical)
Vbat Voltage DividerOffOffOnOnFault dependentOn
TransmitterOffOffOffOnOffOn (Slope control off)
WatchdogOffOffOn with long first pulseOnOffOn but only sets flag
nRST PinLowLowHighHighLDO state dependentHigh
WAKE PinOffOnOnOffOnOff
WKRQ/INHOnOffOnOnINH - On; WKRQ - Fault dependentOn
LIMP
  • Same as previous state when due to a WD fault
  • Turns off when exiting fail-safe mode due to any other fault
OffPrevious state prior to entering STBY due to WD faultPrevious state prior to entering normal mode due to WD faultOnPrevious state prior to entering fast mode due to WD fault
HSSOffOffOn and controlled by HSSC pinOn and controlled by HSSC pinOffOn and controlled by HSSC pin
VCCRampingOffOnOnFault dependentOn
CommentnRST is internally connected to the LDO output which in sleep mode is offWake up event detected,
waiting on processors to set EN
LIN transmission up to 20 kbpsLDO off for TSD, VCCSC or OVCC eventsLIN transmission up to 200 kbps
Note:

LDO state for fault dependent in fail-safe mode is as follows:

  • Watchdog error - On
  • Thermal shut down - Off
  • UVCC - On
  • OVCC over-voltage - Off
  • VCCSC - Off
  • Restart counter exceeded - On
  • SWE timer expiration - On

If TXD is held dominant when device enters normal or fast modes, the LIN transmitter does not turn on until the TXD pin goes recessive.

If VSUP is ≤ UVSUP WKRQ/INH is off.

WKRQ depends upon the LDO being on, so any event that causes the LDO to be turned off will turn off WKRQ.

Any WD failure in Fast Mode will only set interrupt and not take any other action (will not set LIMP, transition to Fail-safe or Restart or take any WD fail action)

  • nRST depends upon the LDO state. When LDO is on, nRST reflects the LDO value.
    • When LDO is on, nRST reflects the LDO or I/O voltage value except for a UVCC event where nRST is low.
    • When LDO is off, nRST is low.
Table 8-5 Operating SPI Mode
FunctionRestart ModeSleep ModeStandby ModeNormal ModeFail-safe ModeFast Mode
RXDHighFloatingLow for a wake event and power up event otherwise highMirrors LIN busFault

dependent

Mirrors LIN bus
LIN BUS TerminationWeak current pull-upWeak current pull-up45 kΩ (typical)45 kΩ (typical)Weak current pull-up45 kΩ (typical)
Vbat Voltage DividerOffOffOnOnFault dependentOn
TransmitterOffOffOffOnOffOn (Slope control off)
WatchdogOffOffDefault on with long first window but programmable offOn
If programmed off in standby mode when entering normal mode a long first window is implemented
OffOn but only sets flag
SPI pinsOffOffOnOnFault dependentOn
nINT pinOffOffOnOnFault dependentOn
nRST pinLowLowHighHighLDO state dependentHigh
WAKE PinOffOnOnOffOnOff
WKRQ/INHOnOffOnOnINH - On; WKRQ - Fault dependentOn
LIMP
  • Same as previous state when due to a WD fault
  • When exiting fail-safe mode due to any other fault how 8'h1A[3:2] is programmed determines how LIMP is cleared
OffPrevious state prior to entering STBY due to WD faultPrevious state prior to entering normal mode due to WD faultOnPrevious state prior to entering fast mode due to WD fault
HSSOffOff unless cyclic sensing enabledOnOnOffOn
VCCRampingOffOnOnFault dependentOn
CommentnRST is internally connected to the LDO output which in sleep mode is offWake up event detected,
waiting on processors
LIN transmission up to 20 kbpsLDO off for TSD, VCCSC or OVCC eventsLIN transmission up to 200 kbps
Note:

Function status when in fail-safe mode that states fault dependent are defined in Table 8-6

If TXD is held dominant when device enters normal or fast modes, the LIN transmitter does not turn on until the TXD pin goes recessive.

If VSUP is ≤ UVSUP WKRQ/INH is off.

WKRQ depends upon the LDO being on, so any event that causes the LDO to be turned off will turn off WKRQ.

Any WD failure in Fast Mode will only set interrupt and not take any other action (will not set LIMP, transition to Fail-safe or Restart or take any WD fail action)

Table 8-6 Fault Dependent States In Fail-safe Mode
FunctionWatchdog ErrorThermal ShutdownUVCCVCC Over VoltageVCCSCRestart Counter Exceeded
LDO (2)OnOffOnOffOffOn (1)
INHProgrammedOnOnOnOnOn
WKRQProgrammedOffOffOffOffOn
SPIOnOffOnOffOffOn
LDO is on in fail-safe mode if the restart counter causes the change when fail-safe mode is enabled.
LDO is on in fail-safe mode if the SWE timer times out causing the device to enter fail-safe mode if enabled.
Figure 8-24 Pin control state diagram
Note:

Normal mode can be entered from Fast mode with TXD in either state:

  • TXD = high, EN = pulse < tFM_CHANGE and nRST = high
  • TXD = low, nRST = high and EN pulse can be any width

Figure 8-25 SPI control state diagram