The 36-V TLVx171 family provides a low-power option for cost-conscious industrial and personal electronics systems requiring an electromagnetic interference (EMI)-hardened, low-noise, single-supply operational amplifier (op amp) that operates on supplies ranging from 2.7 V (±1.35 V) to 36 V (±18 V). The single-channel TLV171, dual-channel TLV2171, and quad-channel TLV4171 provide low offset, drift, quiescent current balanced with high bandwidth for the power. The devices are available in micropackages for space-constrained systems and feature identical specifications for maximum design flexibility.
Unlike most op amp, which are specified at only one supply voltage, the TLVx171 family is specified from 2.7 V to 36 V. Input signals beyond the supply rails do not cause phase reversal. The TLVx171 family is stable with capacitive loads up to 200 pF. The input can operate 100 mV below the negative rail and within 2 V of the top rail during normal operation. These devices can operate with a full rail-to-rail input 100 mV beyond the top rail, but with reduced performance within 2 V of the top rail.
The TLVx171 op amp family is specified from –40°C to +125°C.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
TLV171 | SOIC (8) | 4.90 mm × 3.91 mm |
SOT-23 (5) | 2.90 mm × 1.60 mm | |
TLV2171 | SOIC (8) | 4.90 mm × 3.91 mm |
VSSOP (8) | 3.00 mm × 3.00 mm | |
TLV4171 | SOIC (14) | 8.65 mm × 3.91 mm |
TSSOP (14) | 5.00 mm × 4.40 mm |
DATE | REVISION | NOTES |
---|---|---|
September 2016 | * | Initial release. |
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | TLV171 | |||
DBV | D | |||
IN– | 4 | 2 | I | Negative (inverting) input |
IN+ | 3 | 3 | I | Positive (noninverting) input |
NC(1) | — | 1, 5, 8 | — | No internal connection (can be left floating) |
OUT | 1 | 6 | O | Output |
V+ | 5 | 7 | — | Positive (highest) power supply |
V– | 2 | 4 | — | Negative (lowest) power supply |
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | TLV2171 | |||
D | DGK | |||
–IN A | 2 | 2 | I | Inverting input, channel A |
–IN B | 6 | 6 | I | Inverting input, channel B |
+IN A | 3 | 3 | I | Noninverting input, channel A |
+IN B | 5 | 5 | I | Noninverting input, channel B |
OUT A | 1 | 1 | O | Output, channel A |
OUT B | 7 | 7 | O | Output, channel B |
V– | 4 | 4 | — | Negative (lowest) power supply |
V+ | 8 | 8 | — | Positive (highest) power supply |
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | D | PW | ||
–IN A | 2 | 2 | I | Inverting input, channel A |
+IN A | 3 | 3 | I | Noninverting input, channel A |
–IN B | 6 | 6 | I | Inverting input, channel B |
+IN B | 5 | 5 | I | Noninverting input, channel B |
–IN C | 9 | 9 | I | Inverting input, channel C |
+IN C | 10 | 10 | I | Noninverting input, channel C |
–IN D | 13 | 13 | I | Inverting input, channel D |
+IN D | 12 | 12 | I | Noninverting input, channel D |
OUT A | 1 | 1 | O | Output, channel A |
OUT B | 7 | 7 | O | Output, channel B |
OUT C | 8 | 8 | O | Output, channel C |
OUT D | 14 | 14 | O | Output, channel D |
V– | 11 | 11 | — | Negative (lowest) power supply |
V+ | 4 | 4 | — | Positive (highest) power supply |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Voltage | Supply voltage, V+ to V− | –20 | 20 | V |
Signal input pin | (V−) − 0.5 | (V+) + 0.5 | ||
Current | Signal input pin | –10 | 10 | mA |
Output short-circuit(2) | Continuous | |||
Temperature | Operating, TA | –55 | 150 | °C |
Junction, TJ | 150 | |||
Storage, Tstg | –65 | 150 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±750 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Supply voltage (V+ – V–) | Single supply | 2.7 | 36 | V | |
Dual supply | ±1.35 | ±18 | |||
Specified temperature | –40 | +125 | °C |
THERMAL METRIC(1) | TLV171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DBV (SOT-23) | |||
8 PINS | 5 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 149.5 | 245.8 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 97.9 | 133.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 87.7 | 83.6 | °C/W |
ψJT | Junction-to-top characterization parameter | 35.5 | 18.2 | °C/W |
ψJB | Junction-to-board characterization parameter | 89.5 | 83.1 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
THERMAL METRIC(1) | TLV2171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DGK (VSSOP) | |||
8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 134.3 | 175.2 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 72.1 | 74.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 60.6 | 22.2 | °C/W |
ψJT | Junction-to-top characterization parameter | 18.2 | 1.6 | °C/W |
ψJB | Junction-to-board characterization parameter | 53.8 | 22.8 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
THERMAL METRIC(1) | TLV4171 | UNIT | ||
---|---|---|---|---|
D (SOIC) | PW (TSSOP) | |||
14 PINS | 14 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 93.2 | 106.9 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 51.8 | 24.4 | °C/W |
RθJB | Junction-to-board thermal resistance | 49.4 | 59.3 | °C/W |
ψJT | Junction-to-top characterization parameter | 13.5 | 0.6 | °C/W |
ψJB | Junction-to-board characterization parameter | 42.2 | 54.3 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance | — | — | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
OFFSET VOLTAGE | ||||||
VOS | Input offset voltage | TA = 25°C | 0.75 | ±2.7 | mV | |
TA = –40°C to +125°C | ±3.0 | |||||
dVOS/dT | Input offset voltage drift | TA = –40°C to +125°C | 1 | µV/°C | ||
PSRR | Input offset voltage vs power supply | VS = 4 V to 36 V, TA = –40°C to +125°C | 90 | 105 | dB | |
INPUT BIAS CURRENT | ||||||
IB | Input bias current | ±10 | pA | |||
IOS | Input offset current | ±4 | pA | |||
NOISE | ||||||
Input voltage noise | f = 0.1 Hz to 10 Hz | 3 | µVPP | |||
en | Input voltage noise density | f = 100 Hz | 27 | nV/√Hz | ||
f = 1 kHz | 16 | |||||
INPUT VOLTAGE | ||||||
VCM | Common-mode voltage range(1) | (V–) – 0.1 | (V+) – 2 | V | ||
CMRR | Common-mode rejection ratio | VS = ±18 V, (V–) – 0.1 V < VCM < (V+) – 2 V, TA = –40°C to +125°C |
94 | 105 | dB | |
INPUT IMPEDANCE | ||||||
Differential | 100 || 3 | MΩ || pF | ||||
Common-mode | 6 || 3 | 1012 Ω || pF | ||||
OPEN-LOOP GAIN | ||||||
AOL | Open-loop voltage gain | VS = 36 V, (V–) + 0.35 V < VO < (V+) – 0.35 V, TA = –40°C to +125°C |
94 | 130 | dB | |
FREQUENCY RESPONSE | ||||||
GBP | Gain bandwidth product | 3.0 | MHz | |||
SR | Slew rate | G = +1 | 1.5 | V/µs | ||
tS | Settling time | To 0.1%, VS = ±18 V, G = +1, 10-V step | 6 | µs | ||
To 0.01% (12 bits), VS = ±18 V, G = +1, 10-V step |
10 | |||||
Overload recovery time | VIN × gain > VS | 2 | µs | |||
THD+N | Total harmonic distortion + noise | G = +1, f = 1 kHz, VO = 3 VRMS | 0.0002% | |||
OUTPUT | ||||||
VO | Voltage output swing | Positive rail, VS = ±18 V, RL = 10 kΩ, TA = 25°C |
160 | mV | ||
Negative rail, VS = ±18 V, RL = 10 kΩ, TA = 25°C |
90 | mV | ||||
RL = 10 kΩ, AOL ≥ 94 dB, TA = –40°C to +125°C |
(V–) + 0.35 | (V+) – 0.35 | V | |||
ISC | Short-circuit current | 25 | mA | |||
–35 | ||||||
CLOAD | Capacitive load drive | See Typical Characteristics | pF | |||
RO | Open-loop output resistance | f = 1 MHz, IO = 0 A | 150 | Ω | ||
POWER SUPPLY | ||||||
VS | Specified voltage range | 2.7 | 36 | V | ||
IQ | Quiescent current per amplifier | IO = 0 A, TA = –40°C to +125°C | 525 | 695 | µA | |
TEMPERATURE | ||||||
Specified range | –40 | 125 | °C | |||
Operating range | –55 | 150 | °C |
DESCRIPTION | FIGURE |
---|---|
Offset Voltage Production Distribution | Figure 1 |
Offset Voltage vs Common-Mode Voltage | Figure 2 |
Offset Voltage vs Common-Mode Voltage (Upper Stage) | Figure 3 |
Input Bias Current and Input Offset Current vs Temperature | Figure 4 |
Output Voltage Swing vs Output Current (Maximum Supply) | Figure 5 |
CMRR and PSRR vs Frequency (Referred-to-Input) | Figure 6 |
0.1-Hz to 10-Hz Noise | Figure 7 |
Input Voltage Noise Spectral Density vs Frequency | Figure 8 |
Quiescent Current vs Supply Voltage | Figure 9 |
Open-Loop Gain and Phase vs Frequency | Figure 10 |
Closed-Loop Gain vs Frequency | Figure 11 |
Open-Loop Gain vs Temperature | Figure 12 |
Open-Loop Output Impedance vs Frequency | Figure 13 |
Small-Signal Overshoot vs Capacitive Load | Figure 14, Figure 15 |
No Phase Reversal | Figure 16 |
Small-Signal Step Response (100 mV) | Figure 17, Figure 18 |
Large-Signal Step Response | Figure 19, Figure 20 |
Large-Signal Settling Time (10-V Positive Step) | Figure 21 |
Large-Signal Settling Time (10-V Negative Step) | Figure 22 |
Short-Circuit Current vs Temperature | Figure 23 |
Maximum Output Voltage vs Frequency | Figure 24 |
EMIRR IN+ vs Frequency | Figure 25 |
Distribution taken from 3500 amplifiers |
10 typical units shown |
100-mV output step, RL = 10 kΩ |
RL = 10 kΩ, CL = 100 pF |
G = +1, RL = 10 kΩ, CL = 100 pF |
10-V positive step, G = –1 |
10 typical units shown |
5 typical units shown |
100-mV output step, RL = 10 kΩ |
G = –1, RL = 10 kΩ, CL = 100 pF |
10-V negative step, G = –1 |