SGLS244B May   2004  – December 2016 TLV2371-Q1 , TLV2372-Q1 , TLV2374-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: TLV2371-Q1
    5. 7.5 Thermal Information: TLV2372-Q1
    6. 7.6 Thermal Information: TLV2374-Q1
    7. 7.7 Electrical Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Rail-to-Rail Input Operation
      2. 8.3.2 Driving a Capacitive Load
      3. 8.3.3 Offset Voltage
      4. 8.3.4 General Configurations
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 High-Side Current Monitor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Differential Amplifier Equations
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Inverting Amplifier
      3. 9.2.3 Design Requirements
      4. 9.2.4 Detailed Design Procedure
      5. 9.2.5 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
    3. 11.3 Power Dissipation Considerations
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VDD 16.5 V
Differential input voltage, VID ±VDD
Input voltage, VI –0.2 VDD + 0.2 V
Input current, II ±10 mA
Output current, IO ±100 mA
Maximum junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
TLV2371-Q1 in DBV package
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 3, 4, and 5) ±750
TLV2371-Q1 in D package
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 4, 5, and 8) ±750
TLV2372-Q1 in D package
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 4, 5, and 8) ±750
TLV2374-Q1 in D and PW packages
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) All pins ±2000 V
Charged-device model (CDM), per AEC Q100-011 All pins ±500
Corner pins (1, 7, 8, and 14) ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VDD Supply voltage Single supply 2.7 16 V
Split supply ±1.35 ±8
VICR Common-mode input voltage 0 VDD V
V(ON) Turnon voltage level (relative to GND pin voltage) 2 V
V(OFF) Turnoff voltage level (relative to GND pin voltage) 0.8 V
TA Operating free-air temperature (Q-suffix) –40 125 °C

Thermal Information: TLV2371-Q1

THERMAL METRIC(1) TLV2371-Q1 UNIT
DBV (SOT-23) D (SOIC)
5 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 228.5 138.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 99.1 89.5 °C/W
RθJB Junction-to-board thermal resistance 54.6 78.6 °C/W
ψJT Junction-to-top characterization parameter 7.7 29.9 °C/W
ψJB Junction-to-board characterization parameter 53.8 78.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Thermal Information: TLV2372-Q1

THERMAL METRIC(1) TLV2372-Q1 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 138.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 89.5 °C/W
RθJB Junction-to-board thermal resistance 78.6 °C/W
ψJT Junction-to-top characterization parameter 29.9 °C/W
ψJB Junction-to-board characterization parameter 78.1 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Thermal Information: TLV2374-Q1

THERMAL METRIC(1) TLV2374-Q1 UNIT
D (SOIC) PW (TSSOP)
14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 67 121 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 24.1 49.4 °C/W
RθJB Junction-to-board thermal resistance 22.5 62.8 °C/W
ψJT Junction-to-top characterization parameter 2.2 5.9 °C/W
ψJB Junction-to-board characterization parameter 22.1 62.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

at specified free-air temperature, VDD = 2.7 V, 5 V, and 15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DC PERFORMANCE
VIO Input offset voltage VIC = VDD/2, VO = VDD/2, RS = 50 Ω TA = 25°C 2 4.5 mV
TA = –40°C to 125°C 6
αVIO Offset voltage drift VIC = VDD/2, VO = VDD/2, RS = 50 Ω, TA = 25°C 2 µV/°C
CMRR Common-mode rejection ratio VDD = 2.7 V VIC = 0 to VDD,
RS = 50 Ω
TA = 25°C 50 68 dB
TA = –40°C to 125°C 49
VIC = 0 to
VDD – 1.35 V,
RS = 50 Ω
TA = 25°C 53 70
TA = –40°C to 125°C 54
VDD = 5 V VIC = 0 to VDD,
RS = 50 Ω
TA = 25°C 55 72
TA = –40°C to 125°C 54
VIC = 0 to
VDD – 1.35 V,
RS = 50 Ω
TA = 25°C 58 80
TA = –40°C to 125°C 57
VDD = 15 V VIC = 0 to VDD,
RS = 50 Ω
TA = 25°C 64 82
TA = –40°C to 125°C 63
VIC = 0 to
VDD – 1.35 V,
RS = 50 Ω
TA = 25°C 67 84
TA = –40°C to 125°C 66
AVD Large-signal differential voltage amplification VO(PP) = VDD/2,
RS = 10 Ω
VDD = 2.7 V TA = 25°C 95 106 dB
TA = –40°C to 125°C 76
VDD = 5 V TA = 25°C 80 110
TA = –40°C to 125°C 82
VDD = 15 V TA = 25°C 77 83
TA = –40°C to 125°C 79
INPUT
IIO Input offset current VDD = 15 V, VIC = VDD/2, VO = VDD/2 TA = 25°C 1 60 pA
TA = –40°C to 125°C 500
IIB Input bias current VDD = 15 V, VIC = VDD/2, VO = VDD/2 TA = 25°C 1 60 pA
TA = –40°C to 125°C 500
ri(d) Differential input resistance TA = 25°C 1000
CIC Common-mode input capacitance f = 21 kHz, TA = 25°C 8 pF
OUTPUT
VOH High-level output voltage VIC = VDD/2,
IOH = –1 mA,
VID = 1 V
VDD = 2.7 V TA = 25°C 2.55 2.58 V
TA = –40°C to 125°C 2.48
VDD = 5 V TA = 25°C 4.9 4.93
TA = –40°C to 125°C 4.85
VDD = 15 V TA = 25°C 14.92 14.96
TA = –40°C to 125°C 14.9
VIC = VDD/2,
IOH = –5 mA,
VID = 1 V
VDD = 2.7 V TA = 25°C 1.88 2
TA = –40°C to 125°C 1.42
VDD = 5 V TA = 25°C 4.58 4.68
TA = –40°C to 125°C 4.44
VDD = 15 V TA = 25°C 14.7 14.8
TA = –40°C to 125°C 14.6
VOL Low-level output voltage VIC = VDD/2,
IOH = 1 mA,
VID = 1 V
VDD = 2.7 V TA = 25°C 0.1 0.15 V
TA = –40°C to 125°C 0.22
VDD = 5 V TA = 25°C 0.05 0.1
TA = –40°C to 125°C 0.15
VDD = 15 V TA = 25°C 0.05 0.08
TA = –40°C to 125°C 0.1
VIC = VDD/2,
IOH = 5 mA,
VID = 1 V
VDD = 2.7 V TA = 25°C 0.52 0.7
TA = –40°C to 125°C 1.15
VDD = 5 V TA = 25°C 0.28 0.4
TA = –40°C to 125°C 0.54
VDD = 15 V TA = 25°C 0.19 0.3
TA = –40°C to 125°C 0.35
POWER SUPPLY
IDD Supply current
(per channel)
VO = VDD/2 VDD = 2.7 V TA = 25°C 470 560 µA
VDD = 5 V TA = 25°C 550 660
VDD = 15 V TA = 25°C 750 900
TA = –40°C to 125°C 1200
PSRR Supply voltage rejection ratio (ΔVDD/ΔVIO) VDD = 2.7 V to 15 V, VIC = VDD/2,
no load
TA = 25°C 70 80 dB
TA = –40°C to 125°C 65
DYNAMIC PERFORMANCE
UGBW Unity gain bandwidth RL = 2 kΩ, CL = 10 pF VDD = 2.7 V, TA = 25°C 2.4 MHz
VDD = 5 V to 15 V,
TA = 25°C
3
SR Slew rate at unity gain VO(PP) = VDD/2,
RL = 10 kΩ,
CL = 50 pF
VDD = 2.7 V TA = 25°C 1.4 2 V/µs
TA = –40°C to 125°C 1
VDD = 5 V TA = 25°C 1.4 2.4
TA = –40°C to 125°C 1.2
VDD = 15 V TA = 25°C 1.9 2.1
TA = –40°C to 125°C 1.4
φm Phase margin RL = 2 kΩ, CL = 100 pF, TA = 25°C 65°
Gain margin RL = 2 kΩ, CL = 10 pF, TA = 25°C 18 dB
ts Settling time VDD = 2.7 V, V(STEP)PP = 1 V, AV = –1, RL = 2 kΩ, CL = 10 pF,
0.1% at 25°C
2.9 µs
VDD = 5 V or 15 V, V(STEP)PP = 1 V, AV = –1, RL = 2 kΩ,
CL = 47 pF, 0.1% at 25°C
2
NOISE/DISTORTION PERFORMANCE
THD+N Total harmonic distortion plus noise VDD = 2.7 V, VO(PP) = VDD/2 V,
RL = 2 kΩ, f = 10 kHz, TA = 25°C
AV = 1 0.02%
AV = 10 0.05%
AV = 100 0.18%
VDD = 5 V or 15 V, VO(PP) = VDD/2 V,
RL = 2 kΩ, f = 10 kHz, TA = 25°C
AV = 1 0.02%
AV = 10 0.09%
AV = 100 0.5%
Vn Equivalent input noise voltage f = 1 kHz, TA = 25°C 39 nV√Hz
f = 10 kHz, TA = 25°C 35
In Equivalent input noise current f = 1 kHz, TA = 25°C 0.6 fA√Hz

Typical Characteristics

Table 1. Table of Graphs

FIGURE
VIO Input offset voltage vs Common-mode input voltage Figure 1, Figure 2, Figure 3
CMRR Common-mode rejection ratio vs Frequency Figure 4
Input bias and offset current vs Free-air temperature Figure 5
VOL Low-level output voltage vs Low-level output current Figure 6, Figure 8, Figure 10
VOH High-level output voltage vs High-level output current Figure 7, Figure 9, Figure 11
VO(PP) Peak-to-peak output voltage vs Frequency Figure 12
IDD Supply current vs Supply voltage Figure 13
PSRR Power supply rejection ratio vs Frequency Figure 14
AVD Differential voltage gain & phase vs Frequency Figure 15
Gain-bandwidth product vs Free-air temperature Figure 16
SR Slew rate vs Supply voltage Figure 17
vs Free-air temperature Figure 18
φm Phase margin vs Capacitive load Figure 19
Vn Equivalent input noise voltage vs Frequency Figure 20
Voltage-follower large-signal pulse response Figure 21, Figure 22
Voltage-follower small-signal pulse response Figure 23
Inverting large-signal response Figure 24, Figure 25
Inverting small-signal response Figure 26
Crosstalk vs Frequency Figure 27
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_01_sgls244.gif Figure 1. Input Offset Voltage
vs Common-Mode Input Voltage
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_02_sgls244.gif Figure 2. Input Offset Voltage
vs Common-Mode Input Voltage
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_03_sgls244.gif Figure 3. Input Offset Voltage
vs Common-Mode Input Voltage
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_05_sgls244.gif Figure 5. Input Bias and Offset Current
vs Free-Air Temperature
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_07_sgls244.gif Figure 7. High-Level Output Voltage
vs High-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_09_sgls244.gif Figure 9. High-Level Output Voltage
vs High-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_11_sgls244.gif Figure 11. High-Level Output Voltage
vs High-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_13_sgls244.gif Figure 13. Supply Current vs Supply Voltage
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_15_sgls244.gif Figure 15. Differential Voltage Gain and Phase
vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_17_sgls244.gif Figure 17. Slew Rate vs Supply Voltage
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_19_sgls244.gif Figure 19. Phase Margin vs Capacitive Load
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_21_sgls244.gif Figure 21. Voltage-Follower Large-Signal
Pulse Response
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_23_sgls244.gif Figure 23. Voltage-Follower Small-Signal
Pulse Response
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_25_sgls244.gif Figure 25. Inverting Large-Signal Response
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_27_sgls244.gif Figure 27. Crosstalk vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_04_sgls244.gif Figure 4. Common-Mode Rejection Ratio
vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_06_sgls244.gif Figure 6. Low-Level Output Voltage
vs Low-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_08_sgls244.gif Figure 8. Low-Level Output Voltage
vs Low-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_10_sgls244.gif Figure 10. Low-Level Output Voltage
vs Low-Level Output Current
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_12_sgls244.gif Figure 12. Peak-to-Peak Output Voltage
vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_14_sgls244.gif Figure 14. Power Supply Rejection Ratio
vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_16_sgls244.gif Figure 16. Gain Bandwidth Product
vs Free-Air Temperature
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_18_sgls244.gif Figure 18. Slew Rate vs Free-Air Temperature
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_20_sgls244.gif Figure 20. Equivalent Input Noise Voltage
vs Frequency
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_22_sgls244.gif Figure 22. Voltage-Follower Large-Signal
Pulse Response
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_24_sgls244.gif Figure 24. Inverting Large-Signal Response
TLV2371-Q1 TLV2372-Q1 TLV2374-Q1 graph_26_sgls244.gif Figure 26. Inverting Small-Signal Response