SLAS355B December   2001  – December 2015 TLV2556

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  External Reference Specifications
    7. 6.7  Internal Reference Specifications
    8. 6.8  Operating Characteristics
    9. 6.9  Timing Requirements, VREF+ = 5 V
    10. 6.10 Timing Requirements, VREF+ = 2.5 V
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Converter Operation
        1. 8.3.1.1 Data I/O Cycle
        2. 8.3.1.2 Sampling Period
        3. 8.3.1.3 Conversion Cycle
      2. 8.3.2  Power Up and Initialization
      3. 8.3.3  Default Mode
      4. 8.3.4  Data Input
      5. 8.3.5  Data Input - Address/Command Bits
      6. 8.3.6  Data Output Length
      7. 8.3.7  LSB Out First
      8. 8.3.8  Bipolar Output Format
      9. 8.3.9  Reference
      10. 8.3.10 INT/EOC Output
      11. 8.3.11 Chip-Select Input (CS)
      12. 8.3.12 Power-Down Features
      13. 8.3.13 Analog MUX
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DW|20
  • PW|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage(2) –0.5 6.5 V
VI Input voltage (any input) –0.3 VCC + 0.3 V
VO Output voltage –0.3 VCC + 0.3 V
Vref+ Positive reference voltage –0.3 VCC + 0.3 V
Vref– Negative reference voltage –0.3 VCC + 0.3 V
II Peak input current (any input) –20 20 mA
Peak total input current (all inputs) –30 30 mA
TJ Operating virtual junction temperature –40 150 °C
TA Operating free-air temperature –40 85 °C
Lead temperature 1.6 mm (1/16 inch) from the case for 10 s 260 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to the GND terminal with REF– and GND wired together (unless otherwise noted).

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC Supply voltage 2.7 5.5 V
I/O CLOCK frequency VCC = 4.5 V to 5.5 V 16-bit I/O 0.01 15 MHz
12-bit I/O 0.01 15
8-bit I/O 0.01 15
VCC = 2.7 to 3.6 V 0.01 10
Tolerable clock jitter, I/O CLOCK VCC = 4.5 V to 5.5 V 0.38 ns
Aperature jitter VCC = 4.5 V to 5.5 V 100 ps
Analog input voltage(1) VCC = 4.5 V to 5.5 V 0 REF+ – REF– V
VCC = 3 V to 3.6 V 0 REF+ – REF–
VCC = 2.7 V to 3 V 0 REF+ – REF–
VIH High-level control input voltage VCC = 4.5 V to 5.5 V 2 V
VCC = 2.7 V to 3.6 V 2.1
VIL Low-level control input voltage VCC = 4.5 V to 5.5 V 0.8 V
VCC = 2.7 V to 3.6 V 0.6
TA Operating free-air temperature –40 85 °C
(1) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).

6.4 Thermal Information

THERMAL METRIC(1) TLV2556 UNIT
DW (SOIC) PW (TSSOP)
20 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 66.0 88.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 31.4 21.6 °C/W
RθJB Junction-to-board thermal resistance 33.7 40.4 °C/W
ψJT Junction-to-top characterization parameter 7.4 0.8 °C/W
ψJB Junction-to-board characterization parameter 33.3 39.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over recommended operating free-air temperature range, when VCC = 5 V: VREF+ = 5 V, I/O CLOCK frequency = 15 MHz,
when VCC = 2.7 V: VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VOH High-level output voltage VCC = 4.5 V, IOH = –1.6 mA
VCC = 2.7 V, IOH = –0.2 mA
30 pF 2.4 V
VCC = 4.5 V, IOH = –20 μA
VCC = 2.7 V, IOH = –20 μA
VCC – 0.1
VOL Low-level output voltage VCC = 4.5 V, IOL = 1.6 mA
VCC = 2.7 V, IOL = 0.8 mA
30 pF 0.4 V
VCC = 4.5 V, IOL = 20 μA
VCC = 2.7 V, IOL = 20 μA
0.1
IOZ High-impedance OFF-state output current VO = VCC, CS = VCC 1 2.5 μA
VO = 0 V, CS = VCC –1 –2.5
ICC Operating supply current CS = 0 V, External reference VCC = 5 V 1.2 mA
VCC = 2.7 V 0.9
CS = 0 V, Internal reference VCC = 5 V 3 mA
VCC = 2.7 V 2.4
ICC(PD) Power-down current For all digital inputs, 0 ≤ VI ≤ 0.5 V or VI ≥ VCC – 0.5 V, I/O CLOCK = 0 V Software power down Ext. Ref 0.1 1 μA
Int. Ref 0.1 1
Auto power down Ext. Ref 0.1 10
Int. Ref 1800
IIH High-level input current VI = VCC 0.005 2.5 μA
IIL Low-level input current VI = 0 V –0.005 –2.5 μA
Ilkg Selected channel leakage current Selected channel at VCC ,
Unselected channel at 0 V
1 μA
Selected channel at 0 V,
Unselected channel at VCC
–1
fOSC Internal oscillator frequency VCC = 4.5 V to 5.5 V 3.27 MHz
VCC = 2.7 V to 3.6 V 2.56
tconvert Conversion time
(13.5 × (1/fOSC) + 25 ns)
VCC = 4.5 V to 5.5 V 4.15 μs
VCC = 2.7 V to 3.6 V 5.54
Internal oscillator frequency switch over voltage 3.6 4.1 V
Zi Input impedance(2) Analog inputs VCC = 4.5 V 600 Ω
VCC = 2.7 V 500
Ci Input capacitance Analog inputs 45 55 pF
Control inputs 5 15
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) The switch resistance is very nonlinear and varies with input voltage and supply voltage. This is the worst case.

6.6 External Reference Specifications

See (2)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
VREF– Reference input voltage, REF– VCC = 4.5 V to 5.5 V –0.1 0 0.1 V
VCC = 2.7 V to 3.6 V –0.1 0 0.1
VREF+ Reference input voltage, REF+ VCC = 4.5 V to 5.5 V 2 VCC V
VCC = 2.7 V to 3.6 V 2 VCC
External reference input voltage difference (REF+ – REF–) VCC = 4.5 V to 5.5 V 1.9 VCC V
VCC = 2.7 V to 3.6 V 1.9 VCC
IREF External reference supply current CS = 0 V VCC = 4.5 V to 5.5 V 1 mA
VCC = 2.7 V to 3.6 V 0.7
ZREF Reference input impedance VCC = 5 V Static 1
During sampling or conversion 6 9
VCC = 2.7 V Static 1
During sampling or conversion 6 9
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) Add a 0.1-μF capacitor between REF+ and REF– pins when external reference is used.

6.7 Internal Reference Specifications

See (1)(2)(3)
PARAMETER TEST CONDITIONS MIN TYP(4) MAX UNIT
VREF– Reference input voltage, REF– VCC = 2.7 V to 5.5 V, REF- = Analog GND 0 V
Internal reference delta voltage, (REF+ – REF–) VCC = 5.5 V Internal 4.096 V selected 3.95 4.065 4.25 V
Internal 2.048 V selected 1.95 2.019 2.1
VCC = 2.7 V Internal 2.048 V selected 1.95 2.019 2.1
Internal reference start-up time VCC = 5 V With 10-µF load 20 ms
VCC = 2.7 V 20
Internal reference temperature coefficient VCC = 2.7 V to 5.5 V ±50 ppm/°C
(1) Add a 0.1-μF capacitor between REF+ and REF– pins when external reference is used.
(2) Add a 0.1-μF capacitor between REF+ and REF– pins.
(3) REF- must be connected to analog GND (the ground of the ADC).
(4) All typical values are at VCC = 5 V, TA = 25°C.

6.8 Operating Characteristics

over recommended operating free-air temperature range, when VCC = 5 V: VREF+ = 5 V, I/O CLOCK frequency = 15 MHz,
when VCC = 2.7 V: VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
INL Integral linearity error(3) –1 1 LSB
DNL Differential linearity error –1 1 LSB
EO Offset error(4) See (2) –2 2 mV
EG Gain error(4) See (2) –3 3 mV
ET Total unadjusted error(5) ±1.5 LSB
Self-test output code(6) Address data input = 1011 2048
Address data input = 1100 0
Address data input = 1101 4095
(1) All typical values are at VCC = 5 V, TA = 25°C.
(2) Analog input voltages greater than the voltage applied to REF+ convert as all ones (111111111111), while input voltages less than the voltage applied to REF– convert as all zeros (000000000000).
(3) Linearity error is the maximum deviation from the best straight line through the A/D transfer characteristics.
(4) Gain error is the difference between the actual midstep value and the nominal midstep value in the transfer diagram at the specified gain point after the offset error has been adjusted to zero. Offset error is the difference between the actual midstep value and the nominal midstep value at the offset point.
(5) Total unadjusted error comprises linearity, zero-scale errors, and full-scale errors.
(6) Both the input address and the output codes are expressed in positive logic.

6.9 Timing Requirements, VREF+ = 5 V

over recommended operating free-air temperature range,
VREF+ = 5 V, I/O CLOCK frequency = 15 MHz, VCC = 5 V, Load = 25 pF (unless otherwise noted)
MIN MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 26.7 100000 ns
tsu1 Set-up time DATA IN valid before I/O CLOCK rising edge (see Figure 47) 12 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 47) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(2) (see Figure 48) 25 ns
th2 Hold time CS pulse duration high time (see Figure 48) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 48) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 49) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 52) 0 ns
th6 Hold time CS high after INT falling edge (seeFigure 52) 0 ns
th7 Hold time I/O CLOCK low after EOC rising edge or INT falling edge when CS is held low (seeFigure 53) 10 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 46) Load = 25 pF 28 ns
Load = 10 pF 20
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 46) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 49) 2 20 ns
td4 Delay time last I/O CLOCK falling edge to EOC falling edge (seeFigure 50) 55 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 μs
td6 Delay time last I/O CLOCK falling edge to INT falling edge (see Figure 50) tconvert(max) ns
td7 Delay time EOC rising edge or INT falling edge to DATA OUT valid: MSB or LSB 1st (see Figure 51) 4 ns
td9 Delay time I/O CLOCK high to INT rising edge when CS is held low (see Figure 53) 1 28 ns
tt1 Transition time I/O CLOCK(2) (see Figure 49) 1 μs
tt2 Transition time DATA OUT (see Figure 49) 5 ns
tt3 Transition time INT/EOC, CL = 7 pF (see Figure 50 and Figure 51) 2.4 ns
tt4 Transition time DATA IN, CS 10 μs
tcycle Total cycle time (sample, conversion and delays)(2) See (1) μs
tsample Channel acquisition time (sample) at 1 kΩ(2)
(see Figure 1 through Figure 6)
Source impedance = 25 Ω 600 ns
Source impedance = 100 Ω 650
Source impedance = 500 Ω 700
Source impedance = 1 kΩ 1000
(1) tconvert(max) + I/O CLOCK period (8/12/16 CLKs)(2)
(2) I/O CLOCK period = 8 × [1/(I/O CLOCK frequency)] or 12 × [1/(I/O CLOCK frequency)] or 16 × [1/(I/O CLOCK frequency)], depending on I/O format selected

6.10 Timing Requirements, VREF+ = 2.5 V

over recommended operating free-air temperature range,
VREF+ = 2.5 V, I/O CLOCK frequency = 10 MHz, VCC = 2.7 V, Load = 25 pF (unless otherwise noted)
MIN MAX UNIT
tw1 Pulse duration I/O CLOCK high or low 40 100000 ns
tsu1 Set-up time DATA IN valid before I/O CLOCK rising edge (see Figure 47) 22 ns
th1 Hold time DATA IN valid after I/O CLOCK rising edge (see Figure 47) 0 ns
tsu2 Setup time CS low before first rising I/O CLOCK edge(2) (see Figure 48) 33 ns
th2 Hold time CS pulse duration high time (see Figure 48) 100 ns
th3 Hold time CS low after last I/O CLOCK falling edge (see Figure 48) 0 ns
th4 Hold time DATA OUT valid after I/O CLOCK falling edge (see Figure 49) 2 ns
th5 Hold time CS high after EOC rising edge when CS is toggled (see Figure 52) 0 ns
th6 Hold time CS high after INT falling edge (see Figure 52) 0 ns
th7 Hold time I/O CLOCK low after EOC rising edge or INT falling edge when CS is held low (see Figure 53) 10 ns
td1 Delay time CS falling edge to DATA OUT valid (MSB or LSB) (see Figure 46) Load = 25 pF 30 ns
Load = 10 pF 22
td2 Delay time CS rising edge to DATA OUT high impedance (see Figure 46) 10 ns
td3 Delay time I/O CLOCK falling edge to next DATA OUT bit valid (see Figure 49) 2 33 ns
td4 Delay time last I/O CLOCK falling edge to EOC falling edge (see Figure 50) 75 ns
td5 Delay time last I/O CLOCK falling edge to CS falling edge to abort conversion 1.5 μs
td6 Delay time last I/O CLOCK falling edge to INT falling edge (see Figure 50) tconvert(max) ns
td7 Delay time EOC rising edge or INT falling edge to DATA OUT valid: MSB or LSB 1st (see Figure 51) 20 ns
td9 Delay time I/O CLOCK high to INT rising edge when CS is held low (see Figure 53) 55 ns
tt1 Transition time I/O CLOCK(2) (see Figure 49) 1 μs
tt2 Transition time DATA OUT (see Figure 49) 5 ns
tt3 Transition time INT/EOC, CL = 7 pF (see Figure 50 and Figure 51) 4 ns
tt4 Transition time DATA IN, CS 10 μs
tcycle Total cycle time (sample, conversion and delays)(2) See (1) μs
tsample Channel acquisition time (sample), at 1 kΩ(2)
(see Figure 1 through Figure 6)
Source impedance = 25 Ω 800 ns
Source impedance = 100 Ω 850
Source impedance = 500 Ω 1000
Source impedance = 1 kΩ 1600
(1) tconvert(max) + I/O CLOCK period (8/12/16 CLKs)(2)
(2) I/O CLOCK period = 8 × [1/(I/O CLOCK frequency)] or 12 × [1/(I/O CLOCK frequency)] or 16 × [1/(I/O CLOCK frequency)], depending on I/O format selected
TLV2556 Timing_01_CFGR2_Config_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 1. Timing for CFGR2 Configuration

The host must configure CFGR2 before valid device conversions can begin. This can be accessed through command 1111. This can be done using eight, twelve, or sixteen I/O CLOCK clocks. (A minimum of eight is required to fully program CFGR2.)

After CFGR2 is configured, the following cycle configures CFGR1 and a valid sample or conversion is performed. CS can be held low for each remaining cycle. First valid conversion output data is available on the third cycle after power up.

TLV2556 Timing_03_12-Clk_Trans_Not_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 2. Timing for 12-Clock Transfer Not Using CS With DATA OUT Set for MSB First
TLV2556 Timing_02_12-Clk_Trans_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 3. Timing for 12-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2556 Timing_05_8-Clk_Trans_Not_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 4. Timing for 8-Clock Transfer Not Using CS With DATA OUT Set for MSB First
TLV2556 Timing_04_8-Clk_Trans_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 5. Timing for 8-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2556 Timing_07_16-Clk_Trans_Not_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 6. Timing for 16-Clock Transfer Not Using CS With DATA OUT Set for MSB First
TLV2556 Timing_06_16-Clk_Trans_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 7. Timing for 16-Clock Transfer Using CS With DATA OUT Set for MSB First
TLV2556 Timing_08_Default_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 8. Timing for Default Mode Using CS: (16-Clock Transfer, MSB First, Ext. Ref, Pin 19 = EOC,
Input = AIN0)
TLV2556 Timing_09_Default_Not_Using_CS_SBAS739.gif

NOTE:

To minimize errors caused by noise at CS, the internal circuitry waits for a set-up time after the CS falling edge before responding to control input signals. Therefore, no attempt should be made to clock in an address until the minimum CS setup time has elapsed.
Figure 9. Timing for Default Mode Not Using CS:(16-Clock Transfer, MSB First Ext. Ref, Pin 19 = EOC, Input = AIN0)

To remove the device from default mode, CFGR2 – D0 must be reset to 0. Valid sample or convert cycles can resume on the cycle following the CFGR2 configuration.

6.11 Typical Characteristics

VREF– = 0 V
TLV2556 D001_SBAS739.gif
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 10. Supply Current vs Free-Air Temperature
TLV2556 D003_SBAS739.gif
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 12. Software Power Down vs Free-Air Temperature
TLV2556 D005_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 14. Maximum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D007_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 16. Maximum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D012_SBAS739.gif
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 18. Offset Error vs Free-Air Temperature
TLV2556 D013_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 20. Supply Current vs Free-Air Temperature
TLV2556 D015_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 22. Software Power Down vs Free-Air Temperature
TLV2556 D017_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 24. Maximum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D019_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 26. Maximum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D024_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 28. Offset Error vs Free-Air Temperature
TLV2556 D025_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 30. Supply Current vs Free-Air Temperature
TLV2556 D027_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 32. Software Power Down vs Free-Air Temperature
TLV2556 D029_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 34. Maximum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D031_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 36. Maximum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D036_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 38. Offset Error vs Free-Air Temperature
TLV2556 D009_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS TA = 25°C
Figure 40. Differential Nonlinearity vs Digital Output Code
TLV2556 D021_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS TA = 25°C
Figure 42. Differential Nonlinearity vs Digital Output Code
TLV2556 D033_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 200 kSPS TA = 25°C
Figure 44. Differential Nonlinearity vs Digital Output Code
TLV2556 D002_SBAS739.gif
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 11. Auto Power Down vs Free-Air Temperature
TLV2556 D004_SBAS739.gif
\
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 13. 2.048-V Internal Reference Current vs Free-Air Temperature
TLV2556 D006_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 15. Minimum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D008_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 17. Minimum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D011_SBAS739.gif
VCC = 3.3 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS
Figure 19. Gain Error vs Free-Air Temperature
TLV2556 D014_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 21. Auto Power Down vs Free-Air Temperature
TLV2556 D016_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 23. 4.096 V Internal Reference Current vs Free-Air Temperature
TLV2556 D018_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 25. Minimum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D020_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 27. Minimum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D023_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 29. Gain Error vs Free-Air Temperature
TLV2556 D026_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 31. Auto Power Down vs Free-Air Temperature
TLV2556 D028_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 33. Internal Reference Current vs Free-Air Temperature
TLV2556 D030_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 35. Minimum Differential Nonlinearity vs Free-Air Temperature
TLV2556 D032_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 37. Minimum Integral Nonlinearity vs Free-Air Temperature
TLV2556 D035_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS
Figure 39. Gain Error vs Free-Air Temperature
TLV2556 D010_SBAS739.gif
VCC = 2.7 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 150 kSPS TA = 25°C
Figure 41. Integral Nonlinearity vs Digital Output Code
TLV2556 D022_SBAS739.gif
VCC = 5.5 V VREF+ = 4.096 V VREF- = 0 V
I/O clock = 15 MHz fSAMP = 200 kSPS TA = 25°C
Figure 43. Integral Nonlinearity vs Digital Output Code
TLV2556 D034_SBAS739.gif
VCC = 5.5 V VREF+ = 2.048 V VREF- = 0 V
I/O clock = 10 MHz fSAMP = 200 kSPS TA = 25°C
Figure 45. Integral Nonlinearity vs Digital Output Code