SBOSAG5 December   2024  – December 2024 TLV2888

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: TLV2888
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Common-Mode Range
      2. 6.3.2 Phase-Reversal Protection
      3. 6.3.3 Chopping Transients
      4. 6.3.4 EMI Rejection
      5. 6.3.5 Electrical Overstress
      6. 6.3.6 MUX-Friendly Inputs
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Basic Noise Calculations
    2. 7.2 Typical Applications
      1. 7.2.1 High-Side Current Sensing
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
      2. 7.2.2 Programmable Current Source
      3. 7.2.3 Programmable Current Source For A Grounded Load
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 PSpice® for TI
        2. 8.1.1.2 TINA-TI™ Simulation Software (Free Download)
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TLVx888 operational amplifiers combine precision offset and drift with excellent overall performance, making the device a great choice for a wide variety of precision applications. The precision offset drift of only 0.01µV/°C provides stability over the entire operating temperature range of –40°C to +125°C. In addition, this device offers excellent linear performance with high CMRR, PSRR, and AOL. As with all amplifiers, applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1µF capacitors are adequate. For details and a layout example, see Section 7.4.

The TLVx888 is part of a family of zero-drift, MUX-friendly operational amplifiers. This device operates from 4.5V to 36V, is unity-gain stable, and is designed for a wide range of general-purpose and precision applications. The zero-drift architecture provides ultra-low input offset voltage and near-zero input offset voltage drift over temperature and time. This choice of architecture also offers outstanding ac performance, such as ultra-low broadband noise, zero flicker noise, and outstanding distortion performance when operating at less than the chopper frequency.

The following section shows a representation of the proprietary TLVx888 architecture.