SLAS520E February   2007  – December 2014 TLV320AIC3101

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Simplified Diagram
  5. Revision History
  6. Description (continued)
  7. Device Comparison Table
  8. Pin Configuration and Functions
  9. Specifications
    1. 9.1 Absolute Maximum Ratings
    2. 9.2 ESD Ratings
    3. 9.3 Recommended Operating Conditions
    4. 9.4 Thermal Information
    5. 9.5 Electrical Characteristics
    6. 9.6 Timing Requirements: Audio Data Serial Interface
    7. 9.7 Typical Characteristics
  10. 10Parameter Measurement Information
  11. 11Detailed Description
    1. 11.1 Overview
    2. 11.2 Functional Block Diagram
    3. 11.3 Feature Description
      1. 11.3.1  Hardware Reset
      2. 11.3.2  Digital Audio Data Serial Interface
        1. 11.3.2.1 Right-Justified Mode
        2. 11.3.2.2 Left-Justified Mode
        3. 11.3.2.3 I2S Mode
        4. 11.3.2.4 DSP Mode
        5. 11.3.2.5 TDM Data Transfer
      3. 11.3.3  Audio Data Converters
        1. 11.3.3.1 Audio Clock Generation
        2. 11.3.3.2 Stereo Audio ADC
          1. 11.3.3.2.1 Stereo Audio ADC High-Pass Filter
          2. 11.3.3.2.2 Automatic Gain Control (AGC)
            1. 11.3.3.2.2.1 Target Level
            2. 11.3.3.2.2.2 Attack Time
            3. 11.3.3.2.2.3 Decay Time
            4. 11.3.3.2.2.4 Noise Gate Threshold
            5. 11.3.3.2.2.5 Maximum PGA Gain Applicable
        3. 11.3.3.3 Stereo Audio DAC
          1. 11.3.3.3.1 Digital Audio Processing for Playback
          2. 11.3.3.3.2 Digital Interpolation Filter
          3. 11.3.3.3.3 Audio DAC Digital Volume Control
          4. 11.3.3.3.4 Increasing DAC Dynamic Range
          5. 11.3.3.3.5 Analog Output Common-Mode Adjustment
          6. 11.3.3.3.6 Audio DAC Power Control
      4. 11.3.4  Audio Analog Inputs
      5. 11.3.5  Analog Fully Differential Line Output Drivers
      6. 11.3.6  Analog High-Power Output Drivers
      7. 11.3.7  Input Impedance and VCM Control
      8. 11.3.8  MICBIAS Generation
      9. 11.3.9  Short-Circuit Output Protection
      10. 11.3.10 Jack/Headset Detection
    4. 11.4 Device Functional Modes
      1. 11.4.1 Bypass Path Mode
        1. 11.4.1.1 Analog Input Bypass Path Functionality
        2. 11.4.1.2 ADC PGA Signal Bypass Path Functionality
        3. 11.4.1.3 Passive Analog Bypass During Power Down
      2. 11.4.2 Digital Audio Processing for Record Path
    5. 11.5 Programming
      1. 11.5.1 I2C Control Interface
      2. 11.5.2 I2C Bus Debug in a Glitched System
    6. 11.6 Register Maps
    7. 11.7 Output Stage Volume Controls
  12. 12Application and Implementation
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 AC-Coupled Headphone Output With Separate Line Outputs and External Speaker Amplifier
        1. 12.2.1.1 Design Requirements
        2. 12.2.1.2 Detailed Design Procedure
        3. 12.2.1.3 Application Curves
      2. 12.2.2 Connections With Headphone and External Speaker Driver in Cell Phone Application
        1. 12.2.2.1 Design Requirements
        2. 12.2.2.2 Detailed Design Procedure
        3. 12.2.2.3 Application Curves
  13. 13Power Supply Recommendations
  14. 14Layout
    1. 14.1 Layout Guidelines
    2. 14.2 Layout Example
  15. 15Device and Documentation Support
    1. 15.1 Trademarks
    2. 15.2 Electrostatic Discharge Caution
    3. 15.3 Glossary
  16. 16Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Description (continued)

The TLV320AIC3101 contains four high-power output drivers as well as two fully differential output drivers. The high-power output drivers are capable of driving a variety of load configurations, including up to four channels of single-ended 16-Ω headphones using ac-coupling capacitors, or stereo 16-Ω headphones in a capless output configuration. In addition, pairs of drivers can be used to drive 8-Ω speakers in a BTL configuration at 500 mW per channel.

The stereo audio DAC supports sampling rates from 8 kHz to 96 kHz and includes programmable digital filtering in the DAC path for 3D, bass, treble, midrange effects, speaker equalization, and de-emphasis for 32-kHz, 44.1-kHz, and 48-kHz sample rates. The stereo audio ADC supports sampling rates from 8 kHz to 96 kHz and is preceded by programmable gain amplifiers or AGC that can provide up to 59.5-dB analog gain for low-level microphone inputs. The TLV320AIC3101 provides an extremely high range of programmability for both attack (8–1,408 ms) and for decay (0.05–22.4 seconds). This extended AGC range allows the AGC to be tuned for many types of applications.

For battery saving applications where neither analog nor digital signal processing are required, the device can be put in a special analog signal passthrough mode. This mode significantly reduces power consumption, as most of the device is powered down during this passthrough operation.

The serial control bus supports the I2C protocol, whereas the serial audio data bus is programmable for I2S, left/right-justified, DSP, or TDM modes. A highly programmable PLL is included for flexible clock generation and support for all standard audio rates from a wide range of available MCLKs, varying from 512 kHz to 50 MHz, with special attention paid to the most-popular cases of 12-MHz, 13-MHz, 16-MHz, 19.2-MHz, and 19.68-MHz system clocks.

The TLV320AIC3101 operates from an analog supply of 2.7 V–3.6 V, a digital core supply of 1.525 V–1.95 V, and a digital I/O supply of 1.1 V–3.6 V. The device is available in a 5-mm × 5-mm 32-pin QFN package.