SNOSDA2F August   2020  – June 2024 TLV3604 , TLV3605 , TLV3607

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Configurations: TLV3604 and TLV3605
    2. 4.1 Pin Configuration: TLV3607
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics (VCCI = VCCO = 2.5V to 5V)
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Rail-to-Rail Inputs
      2. 6.4.2 LVDS Output
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Comparator Inputs
      2. 7.1.2 Capacitive Loads
      3. 7.1.3 Latch Functionality
      4. 7.1.4 Adjustable Hysteresis
    2. 7.2 Typical Application
      1. 7.2.1 Non-Inverting Comparator With Hysteresis
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Performance Plots
      2. 7.2.2 Optical Receiver
      3. 7.2.3 Logic Clock Source to LVDS Transceiver
      4. 7.2.4 External Trigger Function for Oscilloscopes
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input Supply Voltage: VCCI – VEE –0.3 6 V
Output Supply Voltage: VCCO – VEE –0.3 6 V
Supply Voltage Difference: VCCI – VCCO –6 6 V
Input Voltage (IN+, IN–)(2) VEE – 0.3 VCCI + 0.3 V
Differential Input Voltage (VDI = IN+, IN–) –(VCCI + 0.3)  +(VCCI + 0.3) V
Output Voltage (OUT+, OUT–)(3) VEE – 0.3 VCCO + 0.3 V
Shutdown Enable (SHDN) VEE – 0.3 VCCO + 0.3 V
Latch and Hysteresis Control (LE/HYS) VEE – 0.3 VCCO + 0.3 V
Current into Input pins (IN+, IN–, SHDN, LE/HYS)(2) –10 +10 mA
Current into Output pins (OUT+, OUT–)(3) –10 +10 mA
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
Operation outside the Absolute Maximum Ratings may cause permanent device damage.  Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails or 6V, whichever is lower, must be current-limited to 10mA or less.
Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.3V beyond the supply rails must be current-limited to 10mA or less.