SBOS934A August   2018  – December 2018 TLV6001-Q1 , TLV6002-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     CMRR and PSRR vs Temperature
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions: TLV6001-Q1
    2.     Pin Functions: TLV6002-Q1
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: TLV6001-Q1
    5. 6.5 Thermal Information: TLV6002-Q1
    6. 6.6 Electrical Characteristics: VS = 1.8 V to 5 V (±0.9 V to ±2.75 V)
    7. 6.7 Typical Characteristics: Table of Graphs
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Voltage
      2. 7.3.2 Rail-to-Rail Input
      3. 7.3.3 Rail-to-Rail Output
      4. 7.3.4 Common-Mode Rejection Ratio (CMRR)
      5. 7.3.5 Capacitive Load and Stability
      6. 7.3.6 EMI Susceptibility and Input Filtering
    4. 7.4 Device Functional Modes
    5. 7.5 Input and ESD Protection
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example: Single Channel
    3. 10.3 Layout Example: Dual Channel
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DGK|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Capacitive Load and Stability

The TLV600x-Q1 family is designed to be used in applications where driving a capacitive load is required. As with all operational amplifiers, there can be specific instances where the TLV600x-Q1 family can become unstable. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing if an amplifier is stable in operation. An operational amplifier in the unity-gain (1-V/V) buffer configuration that drives a capacitive load exhibits a greater tendency for instability than an amplifier that is operated at a higher noise gain. The capacitive load in conjunction with the op amp output resistance creates a pole within the feedback loop that degrades the phase margin. The degradation of the phase margin increases as the capacitive loading increases. When operating in the unity-gain configuration, the TLV600x-Q1 family remains stable with a pure capacitive load up to approximately 1 nF. The equivalent series resistance (ESR) of some capacitors (CL greater than 1 µF) is sufficient to alter the phase characteristics in the feedback loop such that the amplifier remains stable. Increasing the amplifier closed-loop gain allows the amplifier to drive increasingly larger capacitance. This increased capability is evident when observing the overshoot response of the amplifier at higher voltage gains.

One technique for increasing the capacitive load drive capability of the amplifier when the device operates in a unity-gain configuration is to insert a small resistor, typically 10 Ω to 20 Ω, in series with the output, as Figure 19 shows. This resistor reduces the overshoot and ringing associated with large capacitive loads. One possible problem with this technique is that a voltage divider is created with the added series resistor and any resistor connected in parallel with the capacitive load. The voltage divider introduces a gain error at the output that reduces the output swing.

TLV6001-Q1 TLV6002-Q1 ai_imprv_cap_load_drv_bos563.gifFigure 19. Improving Capacitive Load Drive