SLVSIA2 November   2024 TLV61220A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Controller Circuit
        1. 8.3.1.1 Startup
        2. 8.3.1.2 Operation at Output Overload
        3. 8.3.1.3 Undervoltage Lockout
        4. 8.3.1.4 Overvoltage Protection
        5. 8.3.1.5 Overtemperature Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Enable and Shutdown Mode
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Adjustable Output Voltage Version
        2. 9.2.2.2 Inductor Selection
        3. 9.2.2.3 Capacitor Selection
          1. 9.2.2.3.1 Input Capacitor
          2. 9.2.2.3.2 Output Capacitor
      3. 9.2.3 Application Curves
  11. 10Power Supply Recommendations
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  13. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  14. 13Revision History
  15.   Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

To make sure that the TLV61220A can operate, a suitable inductor must be connected between pin VBAT and pin SW. Inductor values of 4.7 μH show good performance over the whole input and output voltage range .

Choosing other inductance values affects the switching frequency f proportional to 1/L as shown in Equation 2.

Equation 2. TLV61220A

Choosing inductor values higher than 4.7 μH can improve efficiency due to reduced switching frequency and, therefore, with reduced switching losses. Using inductor values below 2.2 μH is not recommended.

Having selected an inductance value, the peak current for the inductor in steady state operation can be calculated. Equation 3 gives the peak current estimate.

Equation 3. TLV61220A

For selecting the inductor this would be the suitable value for the current rating. It also needs to be taken into account that load transients and error conditions may cause higher inductor currents.

Equation 4 helps to estimate whether the device will work in continuous or discontinuous operation depending on the operating points. As long as the inequation is true, continuous operation is typically established. If the inequation becomes false, discontinous operation is typically established.

Equation 4. TLV61220A

The following inductor series from different suppliers have been used with TLV61220A converters:

Table 9-3 List of Inductors
VENDOR INDUCTOR SERIES
Toko DFE252010C
Coilcraft EPL3015
EPL2010
Murata LQH3NP
Taiyo Yuden NR3015
Wurth Elektronik WE-TPC Typ S